Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access March 3, 2020

Intersections of Projections and Slicing Theorems for the Isotropic Grassmannian and the Heisenberg group

  • Fernando Román-García EMAIL logo

Abstract

This paper studies the Hausdorff dimension of the intersection of isotropic projections of subsets of ℝ2n, as well as dimension of intersections of sets with isotropic planes. It is shown that if A and B are Borel subsets of ℝ2n of dimension greater than m, then for a positive measure set of isotropic m-planes, the intersection of the images of A and B under orthogonal projections onto these planes have positive Hausdorff m-measure. In addition, if A is a measurable set of Hausdorff dimension greater than m, then there is a set B ⊂ ℝ2n with dim Bm such that for all x ∈ ℝ2n\B there is a positive measure set of isotropic m-planes for which the translate by x of the orthogonal complement of each such plane, intersects A on a set of dimension dim A – m. These results are then applied to obtain analogous results on the nth Heisenberg group.

MSC 2010: 28A75

References

[1] Z. M. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, and J. T. Tyson. The effect of projections on dimension in the Heisenberg group. Rev. Mat. Iberoam., 29(2):381–432, 2013.10.4171/RMI/725Search in Google Scholar

[2] Z. M. Balogh, K. Fässler, P Mattila, and J. T. Tyson. Projection and slicing theorems in Heisenberg groups. Adv. Math., 231(2):569–604, 2012.10.1016/j.aim.2012.03.037Search in Google Scholar

[3] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points. Math. Ann., 98(1):422–464, 1928.10.1007/BF01451603Search in Google Scholar

[4] Yu. D. Burago and V. A. Zalgaller. Geometric inequalities, volume 285 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiă, Springer Series in Soviet Mathematics.10.1007/978-3-662-07441-1Search in Google Scholar

[5] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.Search in Google Scholar

[6] L. Carleson. Selected problems on exceptional sets. Van Nostrand Mathematical Studies, No. 13. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.Search in Google Scholar

[7] K. Fässler, and R. Hovila. Improved Hausdorff dimension estimate for vertical projections in the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15(3495435):459–483, 2016.10.2422/2036-2145.201309_003Search in Google Scholar

[8] H. Federer. The (φ, k) rectifiable subsets of n-space. Trans. Amer. Soc., 62:114–192, 1947.10.1090/S0002-9947-1947-0022594-3Search in Google Scholar

[9] T. L. J. Harris. An a.e. lower bound for Hausdorff dimension under vertical projections in the Heisenberg group. arXiv e-prints, page arXiv:1811.12559, Nov 2018.Search in Google Scholar

[10] R. Hovila. Transversality of isotropic projections, unrectifiability, and Heisenberg groups. Rev. Mat. Iberoam., 30(2):463–476, 2014.10.4171/RMI/789Search in Google Scholar

[11] R. Kaufman. On Hausdorff dimension of projections. Mathematika, 15:153–155, 1968.10.1112/S0025579300002503Search in Google Scholar

[12] J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4:257–302, 1954.10.1112/plms/s3-4.1.257Search in Google Scholar

[13] P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. A I Math., 1(2):227–244, 1975.10.5186/aasfm.1975.0110Search in Google Scholar

[14] P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. A I Math., 1(2):227–244, 1975.10.5186/aasfm.1975.0110Search in Google Scholar

[15] P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.10.1017/CBO9780511623813Search in Google Scholar

[16] P. Mattila. Fourier analysis and Hausdorff dimension, volume 150 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2015.Search in Google Scholar

[17] P. Mattila and R. D. Mauldin. Measure and dimension functions: measurability and densities. Math. Proc. Cambridge Philos. Soc., 121(1):81–100, 1997.Search in Google Scholar

[18] P. Mattila and T. Orponen. Hausdorff dimension, intersections of projections and exceptional plane sections. Proc. Amer. Math. Soc., 144(8):3419–3430, 2016.10.1090/proc/12985Search in Google Scholar

[19] P. Mattila, R. Serapioni, and F. Serra Cassano. Characterizations of intrinsic rectifiability in Heisenberg groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(4):687–723, 2010.10.2422/2036-2145.2010.4.02Search in Google Scholar

[20] Y. Peres and W. Schlag. Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J., 102(2):193–251, 2000.10.1215/S0012-7094-00-10222-0Search in Google Scholar

Received: 2019-03-27
Accepted: 2020-01-15
Published Online: 2020-03-03

© 2020 Fernando Román-García, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 21.9.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2020-0002/html
Scroll to top button