Abstract
Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen. In this article, via grand maximal functions, the authors introduce the Hardy–Lorentz spaces
References
[1] W. Abu-Shammala and A. Torchinsky, The Hardy–Lorentz spaces Hp,q(n), Studia Math. 182 (2007), 283–294.10.4064/sm182-3-7Search in Google Scholar
[2] A. Almeida and A. M. Caetano, Generalized Hardy spaces, Acta Math. Sin. (Engl. Ser.) 26 (2010), 1673–1692.10.1007/s10114-010-8647-9Search in Google Scholar
[3] J. Alvarez, Hp and weak Hp continuity of Calderón–Zygmund type operators, in: Fourier Analysis (Orono, ME, 1992), 17–34, Lecture Notes in Pure and Appl. Math. 157, Dekker, New York, 1994.10.1201/9781003072133-2Search in Google Scholar
[4] J. Alvarez, Continuity properties for linear commutators of Calderón–Zygmund operators, Collect. Math. 49 (1998), 17–31.Search in Google Scholar
[5] J. Alvarez and M. Milman, Hp continuity properties of Calderón–Zygmund-type operators, J. Math. Anal. Appl. 118 (1986), 63–79.10.1016/0022-247X(86)90290-8Search in Google Scholar
[6] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588–594.Search in Google Scholar
[7] P. Auscher and T. Hytönen, Orthonormal bases of regular wavelets in spaces of homogeneous type, Appl. Comput. Harmon. Anal. 34 (2013), 266–296.10.1016/j.acha.2012.05.002Search in Google Scholar
[8] P. Auscher and T. Hytönen, Addendum to Orthonormal bases of regular wavelets in spaces of homogeneous type [Appl. Comput. Harmon. Anal. 34(2) (2013) 266–296], Appl. Comput. Harmon. Anal. 39 (2015), 568–569.10.1016/j.acha.2015.03.009Search in Google Scholar
[9] C. Bennett and R. C. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988.Search in Google Scholar
[10] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin–New York, 1976.10.1007/978-3-642-66451-9Search in Google Scholar
[11] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781, 1–122.Search in Google Scholar
[12] M. Bownik, B. Li, D. Yang, and Y. Zhou, Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators, Indiana Univ. Math. J. 57 (2008), 3065–3100.10.1512/iumj.2008.57.3414Search in Google Scholar
[13] M. Bownik and L. A. D. Wang, A PDE characterization of anisotropic Hardy spaces, Preprint.Search in Google Scholar
[14] H.-Q. Bui, T. A. Bui, and X. T. Duong, Weighted Besov and Triebel–Lizorkin spaces associated to operators and applications, Forum Math. Sigma 8 (2020), e11, 95 pp.10.1017/fms.2020.6Search in Google Scholar
[15] T. A. Bui and X. T. Duong, Sharp weighted estimates for square functions associated to operators on spaces of homogeneous type, J. Geom. Anal. 30 (2020), 874–900.10.1007/s12220-019-00173-8Search in Google Scholar
[16] T. A. Bui, X. T. Duong, and L. D. Ky, Hardy spaces associated to critical functions and applications to T1 theorems, J. Fourier Anal. Appl. 26 (2020), Article number 27, 67 pp.10.1007/s00041-020-09731-zSearch in Google Scholar
[17] T. A. Bui, X. T. Duong, and F. K. Ly, Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type, Trans. Amer. Math. Soc. 370 (2018), 7229–7292.10.1090/tran/7289Search in Google Scholar
[18] T. A. Bui, X. T. Duong, and F. K. Ly, Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications, J. Funct. Anal. 278 (2020), 108423. 55 pp.10.1016/j.jfa.2019.108423Search in Google Scholar
[19] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.10.4064/sm-24-2-113-190Search in Google Scholar
[20] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math. 16 (1975), 1–64.10.1016/0001-8708(75)90099-7Search in Google Scholar
[21] G. Cleanthous, A. G. Georgiadis, and M. Nielsen, Anisotropic mixed-norm Hardy spaces, J. Geom. Anal. 27 (2017), 2758–2787.10.1007/s12220-017-9781-8Search in Google Scholar
[22] R. R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247–286.Search in Google Scholar
[23] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. (French) Étude de Certaines Intégrales Singulières, Lecture Notes in Mathematics 242, Springer-Verlag, Berlin–New York, 1971.10.1007/BFb0058946Search in Google Scholar
[24] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.10.1090/S0002-9904-1977-14325-5Search in Google Scholar
[25] M. Cwikel, The dual of weak Lp, Ann. Inst. Fourier (Grenoble) 25 (1975), 81–126.10.5802/aif.556Search in Google Scholar
[26] M. Cwikel and C. Fefferman, Maximal seminorms on Weak L1, Studia Math. 69 (1980/81), 149–154.10.4064/sm-69-2-149-154Search in Google Scholar
[27] M. Cwikel and C. Fefferman, The canonical seminorm on weak L1, Studia Math. 78 (1984), 275–278.10.4064/sm-78-3-275-278Search in Google Scholar
[28] D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type. With a Preface by Yves Meyer. Lecture Notes in Mathematics 1996, Springer-Verlag, Berlin, 2009.10.1007/978-3-540-88745-4Search in Google Scholar
[29] Y. Ding and S. Lu, Hardy spaces estimates for multilinear operators with homogeneous kernels, Nagoya Math. J. 170 (2003), 117–133.10.1017/S0027763000008552Search in Google Scholar
[30] Y. Ding, S. Lu, and S. Shao, Integral operators with variable kernels on weak Hardy spaces, J. Math. Anal. Appl. 317 (2006), 127–135.10.1016/j.jmaa.2005.10.085Search in Google Scholar
[31] Y. Ding, S. Lu, and Q. Xue, Parametrized Littlewood–Paley operators on Hardy and weak Hardy spaces, Math. Nachr. 280 (2007), 351–363.10.1002/mana.200410487Search in Google Scholar
[32] Y. Ding and X. Wu, Weak Hardy space and endpoint estimates for singular integrals on space of homogeneous type, Turkish J. Math. 34 (2010), 235–247.Search in Google Scholar
[33] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75–81.Search in Google Scholar
[34] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.10.1007/BF02392215Search in Google Scholar
[35] R. Fefferman and F. Soria, The space Weak H1, Studia Math. 85 (1986), 1–16 (1987).10.4064/sm-85-1-1-16Search in Google Scholar
[36] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.10.1515/9780691222455Search in Google Scholar
[37] X. Fu, T. Ma, and D. Yang, Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type, Ann. Acad. Sci. Fenn. Math. 45 (2020), 343–410.10.5186/aasfm.2020.4519Search in Google Scholar
[38] X. Fu and D. Yang, Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type, Appl. Comput. Harmon. Anal. 44 (2018), 1–37.10.1016/j.acha.2016.04.001Search in Google Scholar
[39] X. Fu, D. Yang, and Y. Liang, Products of functions in BMO(𝒳) and Hat1(𝒳) via wavelets over spaces of homogeneous type, J. Fourier Anal. Appl. 23 (2017), 919–990.10.1007/s00041-016-9483-9Search in Google Scholar
[40] L. Grafakos, Hardy space estimates for multilinear operators. II, Rev. Mat. Iberoam. 8 (1992), 69–92.10.4171/RMI/117Search in Google Scholar
[41] L. Grafakos, Classical Fourier Analysis, 3rd edition, Graduate Texts in Mathematics 249, Springer, New York, 2014.10.1007/978-1-4939-1194-3Search in Google Scholar
[42] L. Grafakos, Modern Fourier Analysis, 3rd edition, Graduate Texts in Mathematics 250, Springer, New York, 2014.10.1007/978-1-4939-1230-8Search in Google Scholar
[43] L. Grafakos, L. Liu, D. Maldonado, and D. Yang, Multilinear analysis on metric spaces, Dissertationes Math. 497 (2014), 1–121.10.4064/dm497-0-1Search in Google Scholar
[44] L. Grafakos, L. Liu, and D. Yang, Maximal function characterizations of Hardy spaces on RD-spaces and their applications, Sci. China Ser. A 51 (2008), 2253–2284.10.1007/s11425-008-0057-4Search in Google Scholar
[45] L. Grafakos, L. Liu, and D. Yang, Radial maximal function characterizations for Hardy spaces on RD-spaces, Bull. Soc. Math. France 137 (2009), 225–251.10.24033/bsmf.2574Search in Google Scholar
[46] L. Grafakos, L. Liu, and D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), 296–310.10.7146/math.scand.a-15099Search in Google Scholar
[47] Ya. Han, Yo. Han, Z. He, J. Li, and C. Pereyra, Geometric characteriztions of embedding theorems — for Sobolev, Besov, and Triebel–Lizorkin spaces on spaces of homogeneous type — via orthonormal wavelets, J. Geom. Anal. (to appear).Search in Google Scholar
[48] Ya. Han, Yo. Han, and J. Li, Criterion of the boundedness of singular integrals on spaces of homogeneous type, J. Funct. Anal. 271 (2016), 3423–3464.10.1016/j.jfa.2016.09.006Search in Google Scholar
[49] Ya. Han, Yo. Han, and J. Li, Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss, Sci. China Math. 60 (2017), 2199–2218.10.1007/s11425-017-9152-4Search in Google Scholar
[50] Y. Han, J. Li, and L. A. Ward, Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases, Appl. Comput. Harmon. Anal. 45 (2018), 120–169.10.1016/j.acha.2016.09.002Search in Google Scholar
[51] Y. Han, D. Müller, and D. Yang, Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), 1505–1537.10.1002/mana.200610435Search in Google Scholar
[52] Y. Han, D. Müller, and D. Yang, A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces, Abstr. Appl. Anal. 2008, Art. ID 893409, 1–250.Search in Google Scholar
[53] Y. Han and E. T. Sawyer, Littlewood–Paley theory on spaces of homogeneous type and the classical function spaces, Mem. Amer. Math. Soc. 110 (1994), no. 530, 1–126.Search in Google Scholar
[54] Z. He, Y. Han, J. Li, L. Liu, D. Yang, and W. Yuan, A complete real-variable theory of Hardy spaces on spaces of homogeneous type, J. Fourier Anal. Appl. 25 (2019), 2197–2267.10.1007/s00041-018-09652-ySearch in Google Scholar
[55] Z. He, L. Liu, D. Yang, and W. Yuan, New Calderón reproducing formulae with exponential decay on spaces of homogeneous type, Sci. China Math. 62 (2019), 283–350.10.1007/s11425-018-9346-4Search in Google Scholar
[56] Z. He, F. Wang, D. Yang, and Wen Yuan, Wavelet characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and its applications, Submitted.Search in Google Scholar
[57] Z. He, D. Yang, and W. Yuan, Real-variable characterizations of local Hardy spaces on spaces of homogeneous type, Math. Nachr. (2019), DOI: 10.1002/mana.201900320.10.1002/mana.201900320Search in Google Scholar
[58] G. Hu, D. Yang, and Y. Zhou, Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type, Taiwanese J. Math. 13 (2009), 91–135.Search in Google Scholar
[59] L. Huang, J. Liu, D. Yang, and W. Yuan, Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, J. Geom. Anal. 29 (2019), 1991–2067.10.1007/s12220-018-0070-ySearch in Google Scholar
[60] L. Huang, J. Liu, D. Yang, and W. Yuan, Dual spaces of anisotropic mixed-norm Hardy spaces, Proc. Amer. Math. Soc. 147 (2019), 1201–1215.10.1090/proc/14348Search in Google Scholar
[61] R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249–276.Search in Google Scholar
[62] T. Hytönen and A. Kairema, Systems of dyadic cubes in a doubling metric space, Colloq. Math. 126 (2012), 1–33.10.4064/cm126-1-1Search in Google Scholar
[63] T. Hytönen and O. Tapiola, Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes, J. Approx. Theory 185 (2014), 12–30.10.1016/j.jat.2014.05.017Search in Google Scholar
[64] N. Ioku, K. Ishige, and E. Yanagida, Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semi-groups, J. Math. Pures Appl. (9) 103 (2015), 900–923.10.1016/j.matpur.2014.09.006Search in Google Scholar
[65] T. Jakab and M. Mitrea, Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces, Math. Res. Lett. 13 (2006), 825–831.10.4310/MRL.2006.v13.n5.a12Search in Google Scholar
[66] Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy–Lorentz spaces Hp(·),q(n), Math. Nachr. 292 (2019), 309–349.10.1002/mana.201700331Search in Google Scholar
[67] P. Koskela, D. Yang, and Y. Zhou, A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions, J. Funct. Anal. 258 (2010), 2637–2661.10.1016/j.jfa.2009.11.004Search in Google Scholar
[68] P. Koskela, D. Yang, and Y. Zhou, Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings, Adv. Math. 226 (2011), 3579–3621.10.1016/j.aim.2010.10.020Search in Google Scholar
[69] W. Li, A maximal function characterization of Hardy spaces on spaces of homogeneous type, Approx. Theory Appl. (N.S.) 14 (2) (1998), 12–27.Search in Google Scholar
[70] Y. Liang, L. Liu, and D. Yang, An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), 1477–1488.10.1007/s10114-011-0287-1Search in Google Scholar
[71] J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, (French) Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68.10.1007/BF02684796Search in Google Scholar
[72] H. Liu, The weak Hp spaces on homogeneous groups, in: Harmonic Analysis (Tianjin, 1988), 113–118, Lecture Notes in Math. 1494, Springer, Berlin, 1991.Search in Google Scholar
[73] J. Liu, D. Yang, and W. Yuan, Anisotropic Hardy–Lorentz spaces and their applications, Sci. China Math. 59 (2016), 1669–1720.10.1007/s11425-016-5157-ySearch in Google Scholar
[74] J. Liu, D. Yang, and W. Yuan, Anisotropic variable Hardy–Lorentz spaces and their real interpolation, J. Math. Anal. Appl. 456 (2017), 356–393.10.1016/j.jmaa.2017.07.003Search in Google Scholar
[75] J. Liu, D. Yang, and W. Yuan, Littlewood–Paley characterizations of anisotropic Hardy–Lorentz spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), 1–33.Search in Google Scholar
[76] L. Liu, D.-C. Chang, X. Fu, and D. Yang, Endpoint boundedness of commutators on spaces of homogeneous type, Appl. Anal. 96 (2017), 2408–2433.10.1080/00036811.2017.1341628Search in Google Scholar
[77] L. Liu, D.-C. Chang, X. Fu, and D. Yang, Endpoint estimates of linear commutators on Hardy spaces over spaces of homogeneous type, Math. Methods Appl. Sci. 41 (2018), 5951–5984.10.1002/mma.5112Search in Google Scholar
[78] L. Liu, D. Yang, and W. Yuan, Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type, Dissertationes Math. 533 (2018), 1–93.10.4064/dm774-2-2018Search in Google Scholar
[79] S. Liu and K. Zhao, Various characterizations of product Hardy spaces associated to Schrödinger operators, Sci. China Math. 58 (2015), 2549–2564.10.1007/s11425-015-5071-8Search in Google Scholar
[80] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257–270.10.1016/0001-8708(79)90012-4Search in Google Scholar
[81] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271–309.10.1016/0001-8708(79)90013-6Search in Google Scholar
[82] J. Merker and J.-M. Rakotoson, Very weak solutions of Poisson’s equation with singular data under Neumann boundary conditions, Calc. Var. Partial Differential Equations 52 (2015), 705–726.10.1007/s00526-014-0730-0Search in Google Scholar
[83] C. Muscalu, T. Tao, and C. Thiele, A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Lett. 10 (2003), 237–246.10.4310/MRL.2003.v10.n2.a10Search in Google Scholar
[84] S. Müller, Hardy space methods for nonlinear partial differential equations. Equadiff 8 (Bratislava, 1993), Tatra Mt. Math. Publ. 4 (1994), 159–168.Search in Google Scholar
[85] E. Nakai and Y. Sawano, Orlicz–Hardy spaces and their duals, Sci. China Math. 57 (2014), 903–962.10.1007/s11425-014-4798-ySearch in Google Scholar
[86] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Math. Japon. 46 (1997), 15–28.Search in Google Scholar
[87] R. Oberlin, A. Seeger, T. Tao, C. Thiele, and J. Wright. A variation norm Carleson theorem, J. Eur. Math. Soc. (JEMS) 14 (2012), 421–464.10.4171/JEMS/307Search in Google Scholar
[88] D. V. Parilov, Two theorems on the Hardy–Lorentz classes H1,q, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 327 (2005), Issled. po Lineĭn. Oper. i Teor. Funkts. 33, 150–167; translation in J. Math. Sci. (N.Y.) 139 (2006), 6447–6456.Search in Google Scholar
[89] N. C. Phuc, The Navier–Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech. 17 (2015), 741–760.10.1007/s00021-015-0229-2Search in Google Scholar
[90] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471–473.Search in Google Scholar
[91] W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.Search in Google Scholar
[92] C. Sadosky, Interpolation of Operators and Singular Integrals. An Introduction to Harmonic Analysis, Monographs and Textbooks in Pure and Applied Math. 53, Marcel Dekker, Inc., New York, 1979.Search in Google Scholar
[93] Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), 123–148.10.1007/s00020-013-2073-1Search in Google Scholar
[94] A. Seeger and T. Tao, Sharp Lorentz space estimates for rough operators, Math. Ann. 320 (2001), 381–415.10.1007/PL00004479Search in Google Scholar
[95] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994), 277–319.10.1080/03605309408821017Search in Google Scholar
[96] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy, Princeton Mathematical Series 43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, N.J., 1993.10.1515/9781400883929Search in Google Scholar
[97] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32, Princeton University Press, Princeton, N.J., 1971.Search in Google Scholar
[98] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics 1381, Springer-Verlag, Berlin, 1989.10.1007/BFb0091154Search in Google Scholar
[99] T. Tao and J. Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoam. 17 (2001), 521–558.Search in Google Scholar
[100] H. Triebel, Theory of Function Spaces. III, Monographs in Mathematics 100, Birkhäuser Verlag, Basel, 2006.Search in Google Scholar
[101] F. Wang, Y. Han, Z. He, and D. Yang, Besov spaces and Triebel–Lizorkin spaces on spaces of homogeneous type with their applications to boundedness of Calderón–Zygmund operators, Submitted.Search in Google Scholar
[102] H. Wang, Boundedness of several integral operators with bounded variable kernels on Hardy and weak Hardy spaces, Internat. J. Math. 24 (2013), 1350095, 1–22.10.1142/S0129167X1350095XSearch in Google Scholar
[103] Xin. Wu and Xia. Wu, Weak Hardy spaces Hp, ∞ on spaces of homogeneous type and their applications, Taiwanese J. Math. 16 (2012), 2239–2258.Search in Google Scholar
[104] X. Yan, D. Yang, W. Yuan, and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), 2822–2887.10.1016/j.jfa.2016.07.006Search in Google Scholar
[105] D. Yang, Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations, Studia Math. 167 (2005), 63–98.10.4064/sm167-1-5Search in Google Scholar
[106] D. Yang, Some new Triebel–Lizorkin spaces on spaces of homogeneous type and their frame characterizations, Sci. China Ser. A 48 (2005), 12–39.10.1007/BF02942219Search in Google Scholar
[107] D. Yang and Y. Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms, J. Math. Anal. Appl. 339 (2008), 622–635.10.1016/j.jmaa.2007.07.021Search in Google Scholar
[108] D. Yang and Y. Zhou, Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications, Math. Ann. 346 (2010), 307–333.10.1007/s00208-009-0400-2Search in Google Scholar
[109] D. Yang and Y. Zhou, New properties of Besov and Triebel–Lizorkin spaces on RD-spaces, Manuscripta Math. 134 (2011), 59–90.10.1007/s00229-010-0384-ySearch in Google Scholar
[110] Y. Zhang, S. Wang, D. Yang, and W. Yuan, Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón–Zygmund operators, Sci. China Math. (2020), DOI: 10.1007/s11425-019-1645-1.10.1007/s11425-019-1645-1Search in Google Scholar
[111] C. Zhuo, Y. Sawano, and D. Yang, Hardy spaces with variable exponents on RD-spaces and applications, Dissertationes Math. 520 (2016), 1–74.10.4064/dm744-9-2015Search in Google Scholar
© 2018 Xilin Zhou et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.