Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 10, 2021

5-Point CAT(0) Spaces after Tetsu Toyoda

  • Nina Lebedeva EMAIL logo and Anton Petrunin

Abstract

We give another proof of Toyoda’s theorem that describes 5-point subspaces in CAT(0) length spaces.

MSC 2010: 53C23; 30L15; 51F99

References

[1] А. Д. Милка. Выпуклые гиперповерхности в псевдоевклидовом пространстве. Докл. АН СССР, 284(6):1314–1316, 1985.Search in Google Scholar

[2] S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov meets Kirszbraun. In Proceedings of the Gökova Geometry-Topology Conference 2010, pages 88–109. Int. Press, Somerville, MA, 2011.Search in Google Scholar

[3] S. Alexander, V. Kapovitch, and A. Petrunin. An invitation to Alexandrov geometry. SpringerBriefs in Mathematics. CAT(0) spaces.Search in Google Scholar

[4] S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov geometry: preliminary version no. 1, 2019.10.1007/978-3-030-05312-3_1Search in Google Scholar

[5] N. Lebedeva, A. Petrunin, and V. Zolotov. Bipolar comparison. Geom. Funct. Anal., 29(1):258–282, 2019.10.1007/s00039-019-00481-9Search in Google Scholar

[6] A. Petrunin. In search of a five-point alexandrov type condition. St. Petersburg Math. J., 29(1):223–225, 2018.10.1090/spmj/1490Search in Google Scholar

[7] T. Toyoda. An intrinsic characterization of five points in a CAT(0) space. Anal. Geom. Metr. Spaces, 8(1):114–165, 2020.10.1515/agms-2020-0111Search in Google Scholar

[8] T. Toyoda. A non-geodesic analogue of reshetnyak’s majorization theorem, 2020.Search in Google Scholar

Received: 2020-09-24
Accepted: 2021-06-15
Published Online: 2021-08-10

© 2021 Nina Lebedeva et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 5.6.2023 from https://www.degruyter.com/document/doi/10.1515/agms-2020-0126/html
Scroll to top button