Abstract
We give another proof of Toyoda’s theorem that describes 5-point subspaces in CAT(0) length spaces.
References
[1] А. Д. Милка. Выпуклые гиперповерхности в псевдоевклидовом пространстве. Докл. АН СССР, 284(6):1314–1316, 1985.Search in Google Scholar
[2] S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov meets Kirszbraun. In Proceedings of the Gökova Geometry-Topology Conference 2010, pages 88–109. Int. Press, Somerville, MA, 2011.Search in Google Scholar
[3] S. Alexander, V. Kapovitch, and A. Petrunin. An invitation to Alexandrov geometry. SpringerBriefs in Mathematics. CAT(0) spaces.Search in Google Scholar
[4] S. Alexander, V. Kapovitch, and A. Petrunin. Alexandrov geometry: preliminary version no. 1, 2019.10.1007/978-3-030-05312-3_1Search in Google Scholar
[5] N. Lebedeva, A. Petrunin, and V. Zolotov. Bipolar comparison. Geom. Funct. Anal., 29(1):258–282, 2019.10.1007/s00039-019-00481-9Search in Google Scholar
[6] A. Petrunin. In search of a five-point alexandrov type condition. St. Petersburg Math. J., 29(1):223–225, 2018.10.1090/spmj/1490Search in Google Scholar
[7] T. Toyoda. An intrinsic characterization of five points in a CAT(0) space. Anal. Geom. Metr. Spaces, 8(1):114–165, 2020.10.1515/agms-2020-0111Search in Google Scholar
[8] T. Toyoda. A non-geodesic analogue of reshetnyak’s majorization theorem, 2020.Search in Google Scholar
© 2021 Nina Lebedeva et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.