Abstract
We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Hölder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajłasz–Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
References
[1] T. Adamowicz, M. Gaczkowski, P. Górka, Harmonic functions on metric measure spaces, Rev. Mat. Complut. 32(1) (2019), 141–186.10.1007/s13163-018-0272-7Search in Google Scholar
[2] T. Adamowicz, A. Kijowski, E. Soultanis, Asymptotically mean value harmonic functions in subriemannian and RCD settings, submitted.Search in Google Scholar
[3] T. Adamowicz, B. Warhurst, Mean value property and harmonicity on Carnot–Carathéodory groups, Potential Anal. 52 (3) (2020), 497–525. doi.org/10.1007/s11118-018-9740-4.Search in Google Scholar
[4] J. M. Aldaz, Boundedness of averaging operators on geometrically doubling metric spaces Ann. Acad. Sci. Fenn. Math. 44(1) (2019), 497–503.10.5186/aasfm.2019.4430Search in Google Scholar
[5] A. Arroyo, J. Llorente, On the asymptotic mean value property for planar p-harmonic functions, Proc. Amer. Math. Soc. 144(9) (2016), 3859–3868.10.1090/proc/13026Search in Google Scholar
[6] B. Bojarski, P. Hajłasz, P. Strzelecki, Improved Ck, approximation of higher order Sobolev functions in norm and capacity, Indiana Univ. Math. J. 51(3) (2002), 507–540.10.1512/iumj.2002.51.2162Search in Google Scholar
[7] B. Bojarski, L. Ihnatsyeva, J. Kinnunen, How to recognize polynomials in higher order Sobolev spaces Math. Scand. 112(2) (2013), 161–181.10.7146/math.scand.a-15239Search in Google Scholar
[8] A. Bose, Functions satisfying a weighted average property, Trans. Amer. Math. Soc. 118 (1965), 472–487.10.1090/S0002-9947-1965-0177128-0Search in Google Scholar
[9] D. Burago, S. Ivanov, Y. Kurylev, Spectral stability of metric-measure Laplacians Israel J. Math. 232(1) (2019), 125–158.10.1007/s11856-019-1865-7Search in Google Scholar
[10] S. Buckley, Is the maximal function of a Lipschitz function continuous?, Ann. Acad. Sci. Fenn. Math. 24(2) (1999), 519–528.Search in Google Scholar
[11] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9(3) (1999), 428–517.10.1007/s000390050094Search in Google Scholar
[12] T. H. Colding, W. P. Minicozzi II, Harmonic Functions on Manifolds, Annals of Math.(2) 146(3), 725–747 (1997).10.2307/2952459Search in Google Scholar
[13] T. H. Colding, W. P. Minicozzi II, Harmonic functions with polynomial growth, J. Differential Geom. 46(1) (1997), 1–77.10.4310/jdg/1214459897Search in Google Scholar
[14] A. Córdoba, J. Ocáriz, A note on generalized laplacians and minimal surfaces, Bull. Lond. Math. Soc. 52 (2020), no. 1, 153–157, doi: 10.1112/blms.12314.10.1112/blms.12314Search in Google Scholar
[15] S. Eriksson-Bique, J. Gill, P. Lahti, N. Shanmugalingam, Asymptotic behavior of BV functions and sets of finite perimeter in metric measure spaces, Trans. Amer. Math. Soc. 374 (2021), no. 11, 8201–8247Search in Google Scholar
[16] F. Ferrari, Q. Liu, J. Manfredi, On the characterization of p-harmonic functions on the Heisenberg group by mean value properties, Discrete Contin. Dyn. Syst. 34 (7) (2014), 2779–2793.10.3934/dcds.2014.34.2779Search in Google Scholar
[17] F. Ferrari, A. Pinamonti, Characterization by asymptotic mean formulas of q-harmonic functions in Carnot groups, Potential Anal. 42(1) (2015), 203–227.10.1007/s11118-014-9430-9Search in Google Scholar
[18] L. Evans, R. Gariepy, Measure theory and fine properties of functions, Studies in advanced mathematics, CRC Press, Boca Raton, FL, 1992.Search in Google Scholar
[19] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.10.1007/978-3-642-61798-0Search in Google Scholar
[20] G. Grubb, Distributions and operators, Graduate Texts in Mathematics, 252. Springer, New York, 2009. xii+461 pp.Search in Google Scholar
[21] P. Hajłasz, Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.10.1090/conm/338/06074Search in Google Scholar
[22] J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.) 44(2) (2007), 163–232.10.1090/S0273-0979-07-01140-8Search in Google Scholar
[23] J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015.10.1017/CBO9781316135914Search in Google Scholar
[24] B. Hua, M. Kell, C. Xia, Harmonic functions on metric measure spaces, arXiv:1308.3607.Search in Google Scholar
[25] B. Hua, Harmonic functions of polynomial growth on singular spaces with nonnegative Ricci curvature, Proc. Amer. Math. Soc. 139(6) (2011), 2191–2205.10.1090/S0002-9939-2010-10635-4Search in Google Scholar
[26] S. Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245(2) (2003), 255–292.10.1007/s00209-003-0542-ySearch in Google Scholar
[27] S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183(2) (2004), 271–315.10.1016/S0001-8708(03)00089-6Search in Google Scholar
[28] A. Kijowski, Characterization of mean value harmonic functions on norm induced metric measure spaces with weighted Lebesgue measure, Electron. J. Differential Equations 2020, Paper No. 8, 26 pp.Search in Google Scholar
[29] B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, J. Amer. Math. Soc. 23(3) (2010), 815–829.10.1090/S0894-0347-09-00658-4Search in Google Scholar
[30] B. Kleiner, J. Mackay, Differentiable structures on metric measure spaces: a primer, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(1) (2016), 41–64.10.2422/2036-2145.201403_004Search in Google Scholar
[31] P. Koskela, D. Yang, Y. Zhou, A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions, J. Funct. Anal. 258(8) (2010), 2637–2661.10.1016/j.jfa.2009.11.004Search in Google Scholar
[32] P. Koskela, D. Yang, Y. Zhou, Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings, Adv. Math. 226(4) (2011), 3579–3621.10.1016/j.aim.2010.10.020Search in Google Scholar
[33] P. Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4(1) (1997), 35–44.10.4310/MRL.1997.v4.n1.a4Search in Google Scholar
[34] P. Li, Harmonic functions and applications to complete manifolds, XIV Escola de Geometria Diferencial. [XIV School of Differential Geometry] Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2006.Search in Google Scholar
[35] J. Manfredi, M. Parviainen, J. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2) (2012), 215–241.10.2422/2036-2145.201005_003Search in Google Scholar
[36] J. Manfredi, M. Parviainen, J. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal. 42(5) (2010), 2058–2081.10.1137/100782073Search in Google Scholar
[37] A. Minne, D. Tewodrose, Asymptotic Mean Value Laplacian in Metric Measure Spaces, J. Math. Anal. Appl. 491(2) (2020), 124330.10.1016/j.jmaa.2020.124330Search in Google Scholar
[38] A. Minne, D. Tewodrose, Symmetrized and non-symmetrized Asymptotic Mean Value Laplacian in metric measure spaces, arXiv:2202.09295.Search in Google Scholar
[39] D. Yang, New characterizations of Hajłasz-Sobolev spaces on metric spaces, Sci. China Ser. A 46(5) (2003), 675–689.10.1360/02ys0343Search in Google Scholar
© 2022 Tomasz Adamowicz et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.