Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 1, 2019

Unité et pluralité de l’espace mathématique chez Leibniz

Valérie Debuiche and David Rabouin


In this paper, we study the possibility of accepting a plurality of spaces in Leibniz – a question which was already tackled by Yvon Belaval and Nicolas Rescher, both of whom answered it positively. Starting from a famous passage in the Principes de la Nature et de la Grâce where God is said to have chosen a world “with terrain, place, and time arranged in the best way possible”, we ask ourselves whether this implies that God chooses amongst a variety of spatial settings and, if so, whether this variety would imply a plurality of spaces. We recall a first existing solution to this issue, which consists in distinguishing between an “abstract” and a “concrete” space. After a quick survey of the many variants of this interpretation, we demonstrate that this disctinction is neutral, in the best case scenario, with regard to our initial problem. We then confront the question of the necessity of geometrical truths – which are, for Leibniz, eternal truths inscribed in divine understanding. At first glance, this seems to prevent the possibility of a plurality of geometries (i. e. of spatial structures endowed with incompatible properties). We show that this is not the case and that one must pay attention to the “conditional” nature of geometrical truths, which Leibniz insists upon in some places and which appears compatible with their being absolutly necessary. Finally, we confront the results of the two preceding sections with the current knowledge on the project of an analysis situs. We put particular emphasis on the way in which metaphysical principles were put forward by Leibniz in the elaboration of his geometry.

Adams, R. 1994. Leibniz. Determinist, Theist, Idealist, New York.10.1093/0195126491.001.0001Search in Google Scholar

Arthur, R. « Leibniz’s Theory of Space ». Foundations of Science 18/3, 499–528.10.1007/s10699-011-9281-4Search in Google Scholar

Belaval, Y. 1978. « Note sur la pluralité des espaces possibles d’après la philosophie de Leibniz ». Perspektiven der Philosophie 4, 9–19.10.5840/pdp197842Search in Google Scholar

Belkind, O. 2013. « Leibniz and Newton on Space ». Foundations of Science 18/3, 467–97.10.1007/s10699-011-9280-5Search in Google Scholar

De Risi, V. 2016. Leibniz on the Parallel Postulate and the Foundations of Geometry. Basel.10.1007/978-3-319-19863-7Search in Google Scholar

–. (éd.) 2015. Mathematizing Space. Basel.10.1007/978-3-319-12102-4Search in Google Scholar

–. 2007. Geometry and Monadology. Leibniz’s Analysis Situs and Philosophy of Space. Basel.Search in Google Scholar

Earman, J. 1979. « Was Leibniz a relationist ? ». Midwest Studies in Philosophy 4/1, 263–76.10.1111/j.1475-4975.1979.tb00380.xSearch in Google Scholar

Echeverría/Parmentier (éds.) 1995. G. W. Leibniz: La caractéristique géométrique. Paris.Search in Google Scholar

Fichant, M. 1994. « Les axiomes de l’identité et la démonstration des formules arithmétiques : 2+2=4 ». Revue Internationale de Philosophie 48/188, 85–119.Search in Google Scholar

Futch, M. 2008. Leibniz’s Metaphysics of Time and Space. New York10.1007/978-1-4020-8237-5Search in Google Scholar

Garber, D. 2015. « Leibniz’s Transcendantal Aesthetic ». In De Risi 2015, 231–54.Search in Google Scholar

Grosholz, E/Yakira, E. 1998. Leibniz’s Science of the Rational, Studia Leibnitiana Sonderheft 26. Suttgart.Search in Google Scholar

Hartz, G./Cover, J. 1988. « Space and Time in the Leibnizian Metaphysics ». Noûs 22, 493–519.10.2307/2215454Search in Google Scholar

Kripke, S. 1963. « Semantical Considerations on Modal Logic ». Acta Philosophica Fennica 16, 83–94.10.1007/978-3-0346-0145-0_16Search in Google Scholar

Leibniz, G. W. 1675. De mente, De Universo, De Deo. In Parkinson 1992, 2–10.Search in Google Scholar

–. 1680. De primis Geometriae elementis. In: Echeverría/Parmentier (éds.) 1995, 281–83.Search in Google Scholar

–. c. 1683. Elementa nova matheseos universalis. In : A VI 4, 513–524 ; trad. fr. dans G. W. Leibniz, Mathesis universalis. Écrits sur la mathématique universelle, Paris, Vrin, 2018, 99–112.Search in Google Scholar

–. 1686. Vérités nécessaires et vérités contingentes. In : Rauzy 1998, 339–49.Search in Google Scholar

–. 1689. Origine des vérités contingentes par un procès à l’infini et à l’exemple des proportions entre quantités incommensurables, c. 1689. In Rauzy 1998, 329–39.Search in Google Scholar

–. c. 1689. Principes logico-métaphysiques. In: Rauzy 1998, 459–64.Search in Google Scholar

–. 1695a. Dialogue effectif sur la liberté de l’homme et l’origine du mal, 1695Search in Google Scholar

–. 1695b. Tentamen anagogicum. Essay Anagogique dans la recherche des causes. GP VII, 270–79.Search in Google Scholar

–. 1697. De la production originale des choses prise à sa racine. In Schrecker, 1978, 82–92.Search in Google Scholar

–. 1702. Réponse aux reflexions contenues dans la seconde Edition du Dictionnaire Critique de M. Bayle, article Rorarius, sur le systeme de l’Harmonie preétablie. GP IV, 554–71.Search in Google Scholar

–. 1704. Nouveaux essais sur l’entendement humain, A VI, 6.Search in Google Scholar

–. 1710. Essais de théodicée, GP VI, 16–365.Search in Google Scholar

–. 1712. In Euclidis Prôta. GM V, 202–203.Search in Google Scholar

–. 1714. Principes de la nature et de la grâce fondés en raison, GP VI, 598–606.Search in Google Scholar

–. 1715. Initia rerum mathematicarum metaphysica. GM VII, 17–29.Search in Google Scholar

Lin, M. 2015. « Leibniz on the Modal Status of Absolute Space and Time ». Noûs 2015, 1–18.10.1111/nous.12124Search in Google Scholar

Mates, B. 1986. The Philosophy of Leibniz. Metaphysics and Language. New York.Search in Google Scholar

Musgrave, A. 1977. « Logicism Revisited ». British Journal of Philosophy of Science 38, 99–127.10.1093/bjps/28.2.99Search in Google Scholar

Parkinson, G. H. R. (éd.) 1992. Leibniz. De Summa Rerum: Philosophical Paper 1675–1676. Yale.Search in Google Scholar

Poincaré, H. 1968. La science et l’hypothèse. Paris.Search in Google Scholar

Rauzy, J.-B. 2001. La doctrine leibnizienne de la vérité. Aspects logiques et ontologiques. Paris.Search in Google Scholar

–. (éd.) 1998. Leibniz : Recherches générales sur l’analyse des notions et des vérités. Paris. (A VI 4, 1664).Search in Google Scholar

Rescher, N. 1977. « Leibniz and the Plurality of Space-Time Frameworks ». Rice University Studies 63/4, 97–106.Search in Google Scholar

Rey, A.-L. (éd.). 2016. Leibniz-De Volder. Correspondance. Paris.Search in Google Scholar

Riemann, B. 1854. Sur les hypothèses qui servent de fondement à la géométrie. In Riemann 1990, 200–299.10.1007/BF02422984Search in Google Scholar

–. 1990. Oeuvres Mathématiques de Riemann. Paris.Search in Google Scholar

Robinet, A. (éd.) 1991, Correspondance Leibniz-Clarke. Paris.Search in Google Scholar

Schrecker, P. (éd.) 1978. Opuscules philosophiques choisis de G. W. Leibniz. Paris.Search in Google Scholar

Sereda, K. 2012. « Was Leibniz the First Spacetime Structuralist ? ». In Philosophy of Science Association, 23rd Biennal Meeting. San Diego, CA.Search in Google Scholar

Slowik, E. 2010. « The “Properties” of Leibnizian Space: Whither Relationism? », Intellectual History Review, 22/1, 107–29.10.1080/17496977.2011.636932Search in Google Scholar

Vailati, E. 1997. Leibniz and Clarke. Oxford.Search in Google Scholar

Winterbourne, T. A. 1982. « On the Metaphysics of the Leibnizian Space and Time ». Studies in History and Philosophy of Science 13/3, 201–14.10.1016/0039-3681(82)90008-5Search in Google Scholar

Published Online: 2019-10-01
Published in Print: 2019-10-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow