Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 17, 2015

Prolonged stopover duration characterises migration strategy and constraints of a long-distance migrant songbird

Debora Arlt, Peter Olsson, James W Fox, Matthew Low and Tomas Pärt
From the journal Animal Migration

Abstract

Stopover behaviour is a central element of migration strategies. But in recent geolocator studies, despite now being able to track individual songbirds during their entire migration, their stopover behaviour has received little attention. We used light-sensitive geolocators to identify the migratory routes and schedules of 12 northern wheatears (Oenanthe oenanthe) breeding in Sweden. Three geolocators collected temperature data complementing inferences from light data by providing additional information on behaviour during migration. The wheatears performed a slow migration with considerable stopover time (84%/76% of autumn/spring migration), with short stops while traveling through Europe, and a prolonged stopover period in both autumn and spring in the Mediterranean region. Spring migration was faster than autumn migration, mainly because of decreased stopover time. Migration routes and time schedules were similar to those from a German breeding population. Compared to wheatears breeding in Alaska with a three-fold migration distance, Swedish wheatears spent more time during stopovers during autumn and spring migration, suggesting less time constraints and potential flexibility in migration schedules. The finding of prolonged stopovers, similar to other recent geolocator studies, shows that temporary residency periods may be common. This changes our current view on stopover ecology to one where temporary residency periods are part of spatio-temporal strategies optimising resource use during the entire annual cycle.

References

[1] Dingle H., Migration. The Biology of Life on the Move, 2nd ed., Oxford University Press, 2014 10.1093/acprof:oso/9780199640386.001.0001Search in Google Scholar

[2] Alerstam T., Bird flight and optimal migration, Trends Ecol. & Evol., 1991, 6, 210–215 10.1016/0169-5347(91)90024-RSearch in Google Scholar

[3] Alerstam T., Optimal bird migration revisited, J. Ornithol., 2011, 152 (Suppl 1), S5–S23 10.1007/s10336-011-0694-1Search in Google Scholar

[4] Kaiser A., Stopover strategies in birds: a review of methods for estimating stopover length, Bird Study, 1999, 46(S1), S299-S308 10.1080/00063659909477257Search in Google Scholar

[5] McKinnon E.A., Fraser K.C., Stutchbury B.J.M., New Discoveries in Landbird Migration using Geolocators, and a Flight Plan for the Future, Auk, 2013, 130, 211-222 10.1525/auk.2013.12226Search in Google Scholar

[6] Stanley C.Q., MacPherson M., Fraser K.C., McKinnon E.A., Stutchbury B.J.M., Repeat Tracking of Individual Songbirds Reveals Consistent Migration Timing but Flexibility in Route, PLoS ONE, 2012, 7(7), e40688, DOI: 10.1371/journal. pone.0040688 Search in Google Scholar

[7] Conklin J.R., Battley P.F., Potter M.A., Absolute Consistency: Individual versus Population Variation in Annual-Cycle Schedules of a Long-Distance Migrant Bird. PLoS ONE, 2013, 8(1), e54535. DOI: 10.1371/journal.pone.0054535 10.1371/journal.pone.0054535Search in Google Scholar PubMed PubMed Central

[8] Liechti F., Witvliet W., Weber R. Bächler E., First evidence of a 200-day non-stop flight in a bird, Nature Communications, 2013, 4, 2554. DOI: 10.1038/ncomms3554 10.1038/ncomms3554Search in Google Scholar PubMed

[9] Weimerskirch H., Wilson R.P., Guinet C., Koudil M.,Use of seabirds to monitor sea-surface temperatures and to validate satellite remote-sensing measurements in the Southern Ocean, Marine Ecology Progress Series, 1995, 126, 299–303 10.3354/meps126299Search in Google Scholar

[10] Thiebot J.-B., Pinaud D., Quantitative method to estimate species habitat use from light-based geolocation data, Endangered Species Research, 10, 341–353. 10.3354/esr00261Search in Google Scholar

[11] Fransson T., Hall-Karlsson S., Swedish Bird Ringing Atlas. Volume 3, Passerines, Swedish Museum of Natural History, 2008 Search in Google Scholar

[12] Schmaljohann H., Buchmann M., Fox J.W., Bairlein F., Tracking migration routes and the annual cycle of a trans-Sahara songbird migrant, Behav. Ecol. Sociobiol., 2012, 66, 915-922 10.1007/s00265-012-1340-5Search in Google Scholar

[13] Schmaljohann H., Fox J.W., Bairlein F., Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world, Anim. Behav., 2012, 84, 623-640 10.1016/j.anbehav.2012.06.018Search in Google Scholar

[14] Pärt T., The effects of territory quality on age-dependent reproductive performance in the northern wheatear, Oenanthe Oenanthe, Anim. Behav., 2001, 62, 379–388 10.1006/anbe.2001.1754Search in Google Scholar

[15] Arlt D., Pärt T., Nonideal breeding habitat selection: A mismatch between preference and breeding success, Ecology, 2007, 88, 792-801 10.1890/06-0574Search in Google Scholar PubMed

[16] Arlt D., Pärt T., Post-breeding information gathering and breeding territory shifts in northern wheatears, J. Anim. Ecol., 2008, 77, 211-219 10.1111/j.1365-2656.2007.01329.xSearch in Google Scholar PubMed

[17] Arlt D., Low M., Pärt T., Effect of geolocators on migration and subsequent breeding performance of a long-distance migrant, PLoS ONE, 2013, 8(12), e82316, DOI: 10.1371/journal. pone.0082316 Search in Google Scholar

[18] Rappole J.H., Tipton A.R., New Harness Design for Attachment of Radio Transmitters to Small Passerines, J. Field Ornithol., 1990, 62, 335-337 Search in Google Scholar

[19] Lisovski S., Hewson C.M., Klaassen R.H.G., Korner-Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Meth. Ecol. Evol., 2013, 3, 603–612 10.1111/j.2041-210X.2012.00185.xSearch in Google Scholar

[20] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013, URL http://www.R-project.org/ Search in Google Scholar

[21] Lisovski S., Hahn S., GeoLight - processing and analyzing light-based geolocation in R, Meth. Ecol. Evol., 2012, 3, 1055-1059 10.1111/j.2041-210X.2012.00248.xSearch in Google Scholar

[22] Meeus J., Astronomical Algorithms, Willman-Bell, Inc., Richmond, 1991 Search in Google Scholar

[23] Ekstrom P., An advance in geolocation by light, Memoirs of the National Institute of Polar Research, 2004, Special Issue 58, 210-226 Search in Google Scholar

[24] Schaub M., Jenni L., Body mass of six long-distance migrant passerine species along the autumn migration route, J. Ornithol., 2000, 141, 441–460 10.1046/j.1439-0361.2000.00037.xSearch in Google Scholar

[25] Salewski V., Schmaljohann H., Liechti F., Spring passerine migrants stopping over in the Sahara are not fall-outs, J. Ornithol., 2010, 51, 371-378 10.1007/s10336-009-0464-5Search in Google Scholar

[26] Maggini I., Bairlein F., Body condition and stopover of trans- Saharan spring migrant passerines caught at a site in southern Morocco, Ringing & Migration, 2011, 26, 31-37 10.1080/03078698.2011.586591Search in Google Scholar

[27] Jahn A.E., Cueto V.R., Fox J.W., Husak M.S., Kim D.H., Landoll D.V., et al., Migration timing and wintering areas of three species of flycatchers (Tyrannus) breeding in the Great Plains of North America, Auk, 2013, 130, 247–257 10.1525/auk.2013.13010Search in Google Scholar

[28] Stutchbury B.J.M., Gow E.A., Done T., MacPherson M., Fox J.W., Afanasyev V., Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics, Proc. R. Soc. Lond. B, 2011, 278, 131–137 10.1098/rspb.2010.1220Search in Google Scholar PubMed PubMed Central

[29] Åkesson S., Klaassen R., Holmgren J., Fox J.W., Hedenström A., Migration routes and strategies in a highly aerial migrant, the Common Swift Apus apus, revealed by light-level geolocators, PLoS ONE, 2012, 7(7), e41195 10.1371/journal.pone.0041195Search in Google Scholar PubMed PubMed Central

[30] Tøttrup A.P., Klaassen R.H.G., Strandberg R., Thorup K., Willemoes K.M., Søgaard Jørgensen P., et al., The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration, Proc. R. Soc. Lond. B, 2012, 279, 1008-1016, DOI: 10.1098/rspb.2011.1323 10.1098/rspb.2011.1323Search in Google Scholar PubMed PubMed Central

[31] Lemke H.W., Tarka M., Klaassen R.H.G., Åkesson M., Bensch S., Hassequist D., et al., Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A Geolocator Study in the Great Reed Warbler, PLoS ONE, 2013, 8(10), e79209, DOI: 10.1371/journal.pone.0079209 10.1371/journal.pone.0079209Search in Google Scholar PubMed PubMed Central

[32] Willemoes M., Strandberg R., Klaassen R.H.G., Tøttrup A.P., Vardanis Y., Howey P.W., et al., Narrow-Front Loop Migration in a Population of the Common Cuckoo Cuculus canorus, as Revealed by Satellite Telemetry, PLoS ONE, 2014, 9(1), e83515, DOI: 10.1371/journal.pone.0083515 10.1371/journal.pone.0083515Search in Google Scholar PubMed PubMed Central

[33] Eraud C., Rivière M., Lormée H., Fox J.W., Ducamp J.-J., Boutin J.-M., Migration Routes and Staging Areas of Trans-Saharan Turtle Doves Appraised from Light-Level Geolocators, PLoS ONE, 2013, 8(3), e59396, DOI: 10.1371/journal.pone.0059396 10.1371/journal.pone.0059396Search in Google Scholar PubMed PubMed Central

[34] Callo P.A., Morton E.S., Stutchbury B.J.M, Prolonged spring migration in the Red-eyed Vireo (Vireo olivaceus), Auk, 2013, 130, 240–246 10.1525/auk.2013.12213Search in Google Scholar

[35] Stach R., Jakobsson S., Kullberg C., Fransson T., Geolocators reveal three consecutive wintering areas in the thrush nightingale, Anim. Migr., 2012, 1, 1-7, DOI: 10.2478/ ami-2012-0001 10.2478/ami-2012-0001Search in Google Scholar

[36] Schmaljohann H., Liechti F., Bruderer B., Songbird migration across the Sahara – the non-stop hypothesis rejected!, Proc. R. Soc. Lond. B, 2007, 274, 735–739 10.1098/rspb.2006.0011Search in Google Scholar PubMed PubMed Central

[37] Dierschke V., Delingat J., Stopover behaviour and departure decision of northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances, Behav. Ecol. Sociobiol., 2001, 50, 535-545. DOI: 10.1007/s002650100397 10.1007/s002650100397Search in Google Scholar

[38] Dierschke V., Mendel B., Schmaljohann H., Differential timing of spring migration in Northern Wheatears Oenanthe oenanthe: hurried males or weak females?, Behav. Ecol. Sociobiol., 2005, 57, 470-480 10.1007/s00265-004-0872-8Search in Google Scholar

[39] Ottosson U., Sandberg R., Pettersson J., Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: the importance of visual cues, Ethology, 1990, 86, 57–70 10.1111/j.1439-0310.1990.tb00418.xSearch in Google Scholar

[40] Schmaljohann H, Dierschke V., Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe Oenanthe, J. Anim. Ecol., 2005, 74, 131-138 10.1111/j.1365-2656.2004.00905.xSearch in Google Scholar

[41] Lindström Å., Maximum fat deposition rates in migrating birds, Ornis Scand., 1991, 22, 12-19 10.2307/3676616Search in Google Scholar

[42] Fransson T., Barboutis C., Mellroth M., Akriotis T., When and where to fuel before crossing the Sahara desert–extended stopover and migratory fuelling in first‐year garden warblers Sylvia borin, J. Avian Biol., 2008, 39, 133–138 10.1111/j.0908-8857.2008.04361.xSearch in Google Scholar

[43] Gannes L.Z., Mass change pattern of blackcaps refueling during spring migration: evidence for physiological limitations to food assimilation, Condor, 2002, 104, 231-239 10.1093/condor/104.2.231Search in Google Scholar

[44] Bauchinger U., Kolb H., Afik D., Pinshow B., Biebach H., Blackcap Warblers Maintain Digestive Efficiency by Increasing Digesta Retention Time on the First Day of Migratory Stopover, Physiol. Biochem. Zool., 2009, 82, 541-548 10.1086/603638Search in Google Scholar PubMed

[45] McWilliams S.R., Karasov W.H., Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design, Proc. R. Soc. Lond. B, 2014, 281, 20140308, DOI: 10.1098/rspb.2014.0308 10.1098/rspb.2014.0308Search in Google Scholar PubMed PubMed Central

[46] Delingat J., Dierschke V., Schmaljohann H., Mendel B., Bairlein F., Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the Northern Wheatear Oenanthe Oenanthe, Ardea, 2006, 94, 593–605 Search in Google Scholar

[47] Wojciechowski M.S., Yosef R., Pinshow B., Body composition of north and southbound migratory blackcaps is influenced by the lay-of-the-land ahead, J. Avian. Biol., 2014, 45, 264-272 10.1111/j.1600-048X.2013.00345.xSearch in Google Scholar

[48] Zwarts L., Bijlsma R.G., van der Kamp J., Wymenga E., Living on the edge: wetlands and birds in a changing Sahel, Zeist: KNNV Publishing, 2009 Search in Google Scholar

[49] Limiñana R., Romero M., Mellone U., Urios V., Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: new insights from satellite telemetry, Ibis, 2012, 154, 389–399 10.1111/j.1474-919X.2011.01210.xSearch in Google Scholar

[50] Newton I., The Migration Ecology of Birds, Academic Press, London, 2008 Search in Google Scholar

[51] Shariatinajafabadi M., Wang T., Skidmore A.K., Toxopeus AG, Kölzsch A, Nolet B.A., et al., Migratory Herbivorous Waterfowl Track Satellite-Derived Green Wave Index. PLoS ONE, 2014, 9(9), e108331, DOI: 10.1371/journal.pone.0108331 10.1371/journal.pone.0108331Search in Google Scholar PubMed PubMed Central

[52] Kokko H., Competition for early arrival in migratory birds, J. Anim. Ecol., 1999, 68, 940–950 10.1046/j.1365-2656.1999.00343.xSearch in Google Scholar

[53] Smith R.J., Moore F.R., Arrival timing and seasonal reproductive performance in a long-distance migratory landbird, 2005, Behav. Ecol. Sociobiol., 57, 231–239 10.1007/s00265-004-0855-9Search in Google Scholar

[54] Verhulst S., Nilsson J.-Å., The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding, Phil. Trans. R. Soc. Lond. B, 2008, 363, 399–410 10.1098/rstb.2007.2146Search in Google Scholar PubMed PubMed Central

[55] Schaub M., Jenni L., Stopover durations of three warbler species along their autumn migration route, Oecologia, 2001, 128, 217–227 10.1007/s004420100654Search in Google Scholar PubMed

[56] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181, 837-845 10.1086/670335Search in Google Scholar PubMed

[57] Arlt D., Pärt T., Sex-biased dispersal: a result of a sex-difference in breeding site availability, Am. Nat., 2008, 171, 844-850 10.1086/587521Search in Google Scholar PubMed

[58] van Oosten H.H., Versluijs R., van Wijk R., Two Dutch Northern wheatears in the Sahel: unravelling migration routes and wintering areas, Limosa, 2014, 87, 168-172 Search in Google Scholar

[59] Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., et al., Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B, 2012, 279, 4901-4906 10.1098/rspb.2012.2207Search in Google Scholar PubMed PubMed Central

[60] Seavy N.E., Humple D.L., Cormier R.L., Gardali T., Establishing the Breeding Provenance of a Temperate-Wintering North American Passerine, the Golden-Crowned Sparrow, Using Light-Level Geolocation, PLoS ONE, 2012, 7(4), e34886, DOI: 10.1371/journal.pone.0034886 10.1371/journal.pone.0034886Search in Google Scholar PubMed PubMed Central

[61] Stanley C.Q., McKinnon E.A., Fraser K., Macpherson M.P., Casbourn G., Friesen L., et al., Connectivity of Wood Thrush Breeding, Wintering, and Migration Sites Based on Range-Wide Tracking, Cons. Biol., 2015, 29, 164–174 10.1111/cobi.12352Search in Google Scholar PubMed

[62] Hahn S., Amrhein V., Zehtindijev P., Liechti F., Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird, Oecologia, 2013, 173, 1217-1225 10.1007/s00442-013-2726-4Search in Google Scholar PubMed

[63] Cresswell W., Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis, Ibis, 2014, published online, DOI: 10.1111/ibi.12168 10.1111/ibi.12168Search in Google Scholar

[64] Norris R.D., Marra P.P., Seasonal interactions, habitat quality, and population dynamics in migratory birds, Condor, 2007, 109, 535-547 10.1093/condor/109.3.535Search in Google Scholar

[65] Heckscher C.M., Taylor S.M., Fox J.W., Afanasyev V., Veery (Catharus fuscescens) Wintering Locations, Migratory Connectivity, and a Revision of Its Winter Range using Geolocator Technology, Auk, 2011, 128, 531-542. 10.1525/auk.2011.10280Search in Google Scholar

[66] Cramp S. (Ed.), Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, Volume V: Tyrant flycatchers to thrushes, Oxford University Press, New York, 1988 Search in Google Scholar

[67] Constantini D, Møller A.P., A meta-analysis of the effects of geolocator application on birds, Curr. Zool., 2013, 59, 697-706 10.1093/czoolo/59.6.697Search in Google Scholar

[68] Scandolara C., Rubolini D., Ambrosini R., Caprioli M., Hahn S., Liechti F., et al., Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits, J. Avian Biol., 2014, DOI: 10.1111/jav.0041 Search in Google Scholar

Received: 2014-12-09
Accepted: 2015-03-22
Published Online: 2015-04-17
Published in Print: 2015-01-01

© 2015 Debora Arlt et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow