Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 11, 2015

Environmental factors in migratory route decisions: a case study on Greenlandic Arctic Terns (Sterna paradisaea)

  • Christopher Michael Hensz
From the journal Animal Migration


Identification and characterization of seasonal migration routes and stopover sites has been recognized as important to the conservation of migratory species. This project utilizes multiple regression models including circular-linear regression to identify associations between route choice, travel speed, and environmental preferences using trajectory data of migratory Arctic Terns (Sterna paradisaea) and environmental data obtained through remote-sensing techniques. Results of this study suggest that route choice on the southward post-breeding migration route may be more dependent on underlying environment than the northward postwintering migration route. In contrast, travel speed was variably associated with underlying environment between southward and northward migrations, including several differences regarding the impact of interactions between environmental variables. These results reveal the importance of using multiple metrics in the estimation of spatial resistance and highlight conflicts between the theoretical resistance framework of GIS and movement analysis methods.


[1] Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D., et al., A movement ecology paradigm for unifying organismal movement research, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(49), 19052-19059 10.1073/pnas.0800375105Search in Google Scholar

[2] Nakazawa Y., Martínez-Meyer E., Peterson A.T., Navarro- Sigüenza A.G., Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae), Proc. R. Soc. Lond. B Biol. Sci., 2004, 271(1544), 1151-1157 10.1098/rspb.2003.2564Search in Google Scholar

[3] Crick, H.Q.P., Migratory wildlife in a changing climate, In: Vagg R., Hepwort H. (Eds.), Migratory Species and Climate Change: Impacts of a Changing Environment on Wild Animals, UNEP/ CMS Secretariat, Bonn, 2006 Search in Google Scholar

[4] Desrochers A., Belisle M., Morand-Ferron J., Bourque J., Integrating GIS and homing experiments to study avian movement costs, Landsc. Ecol., 2011, 26(1), 47-58 10.1007/s10980-010-9532-8Search in Google Scholar

[5] Driezen K., Adriaensen F., Rondinini C., Doncaster C.P., Matthysen E., Evaluating least-cost model predictions with empirical dispersal data: a case-study using radiotracking data of hedgehogs (Erinaceus europaeus), Ecol. Model., 2007, 209(2-4), 314-322 10.1016/j.ecolmodel.2007.07.002Search in Google Scholar

[6] Forester J.D., Ives A.R., Turner M.G., Anderson D.P., Fortin D., Beyer H.L., et al., State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park, Ecol. Monogr., 2007, 77(2), 285-299 10.1890/06-0534Search in Google Scholar

[7] Mandel J.T., Bohrer G., Winkler D.W., Barber D.R., Houston C.S., Bildstein K.L., Migration path annotation: crosscontinental study of migration-flight response to environmental conditions,Ecol. Appl., 2011, 21(6), 2258-2268 10.1890/10-1651.1Search in Google Scholar

[8] O’Brien D., Manseau M., Fall A., Fortin M.-J., Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory, Biol. Conserv., 2006, 130(1), 70-83 10.1016/j.biocon.2005.12.014Search in Google Scholar

[9] Schick R.S., Loarie S.R., Colchero F., Best B.D., Boustany A., Conde D.A., et al., Understanding movement data and movement processes: current and emerging directions, Ecol. Lett., 2008, 11(12), 1338-1350 10.1111/j.1461-0248.2008.01249.xSearch in Google Scholar

[10] Adriaensen F., Chardon J.P., De Blust G., Swinnen E., Villalba S., Gulinck H., et al., The application of ‘least-cost’ modelling as a functional landscape model, Landsc. Urban Plann., 2003, 64(4), 233-247 10.1016/S0169-2046(02)00242-6Search in Google Scholar

[11] Beier P., Spencer W., Baldwin R.F., McRae B.H., Toward best practices for developing regional connectivity maps, Conserv. Biol., 2011, 25(5), 879-892 10.1111/j.1523-1739.2011.01716.xSearch in Google Scholar PubMed

[12] Chetkiewicz C.L.B., Boyce M.S., Use of resource selection functions to identify conservation corridors, J. Appl. Ecol., 2009, 46(5), 1036-1047 10.1111/j.1365-2664.2009.01686.xSearch in Google Scholar

[13] Epps C.W., Wehausen J.D., Bleich V.C., Torres S.G., Brashares J.S., Optimizing dispersal and corridor models using landscape genetics, J. Appl. Ecol., 2007, 44(4), 714-724 10.1111/j.1365-2664.2007.01325.xSearch in Google Scholar

[14] Spear S.F., Balkenhol N., Fortin M.-J., McRae B.H., Scribner K.I.M., Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis, Mol. Ecol., 2010, 19(17), 3576-3591 10.1111/j.1365-294X.2010.04657.xSearch in Google Scholar PubMed

[15] Beier P., Majka D.R., Spencer W.D., Forks in the road: choices in procedures for designing wildland linkages, Conserv. Biol., 2008, 22(4), 836-851 10.1111/j.1523-1739.2008.00942.xSearch in Google Scholar PubMed

[16] Felicisimo A.M., Munoz J., Gonzalez-Solis J., Ocean surface winds drive dynamics of transoceanic aerial movements, PLoS One, 2008, 3(8), 7 10.1371/journal.pone.0002928Search in Google Scholar PubMed PubMed Central

[17] González-Solís J., Felicísimo A., Fox J.W., Afanasyev V., Kolbeinsson Y., Muñoz J.s., Influence of sea surface winds on shearwater migration detours, Mar. Ecol. Prog. Ser., 2009, 391, 221-230 10.3354/meps08128Search in Google Scholar

[18] Turchin P., Quantitative analysis of movement. Sinnauer Associates, Sunderland, MA, USA, 1998 Search in Google Scholar

[19] Fortin M.-J., Dale M.R.T. Spatial analyisis: a guide for ecologists, Cambridge University Press, Cambridge, UK, 2005 10.1017/CBO9780511542039Search in Google Scholar

[20] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci. U. S. A., 2010, 107(5), 2078-2081 10.1073/pnas.0909493107Search in Google Scholar PubMed PubMed Central

[21] Gudmundsson G.A., Alerstam T., Larsson B., Radar observations of northbound migration of the Arctic tern, Sterna paradisaea, at the Antarctic Peninsula, Antarct. Sci., 1992, 4(2), 163-170 10.1017/S0954102092000257Search in Google Scholar

[22] Møller A.P., Flensted-Jensen E., Mardal W., Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea, Glob. Change Biol., 2006, 12(10), 2005-2013 10.1111/j.1365-2486.2006.01216.xSearch in Google Scholar

[23] Fijn R.C., Hiemstra D., Phillips R.A., Winden J.v.d., Arctic Terns Sterna paradisaea from the Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica, Ardea, 2013, 101(1), 3-12 10.5253/078.101.0102Search in Google Scholar

[24] McKnight A., Allyn A.J., Duffy D.C., Irons D.B., ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas, Mar. Ecol. Prog. Ser., 2013, 491, 253-264 10.3354/meps10469Search in Google Scholar

[25] Duffy D.C., Mcknight A., Irons D.B., Trans-Andean passage of migrating Arctic Terns over Patagonia, Mar. Ornithol., 2013, 41, 155-159 Search in Google Scholar

[26] Shaffer S.A., Tremblay Y., Weimerskirch H., Scott D., Thompson D.R., Sagar P.M., et al., Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(34), 12799-12802 10.1073/pnas.0603715103Search in Google Scholar PubMed PubMed Central

[27] Raymond B., Shaffer S.A., Sokolov S., Woehler E.J., Costa D.P., Einoder L., et al., Shearwater foraging in the Southern Ocean: the roles of prey availability and winds, PLoS One, 2010, 5(6), e10960 10.1371/journal.pone.0010960Search in Google Scholar PubMed PubMed Central

[28] Dias M.P., Granadeiro J.P., Phillips R.A., Alonso H., Catry P., Breaking the routine: individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins, Proc. R. Soc. Biol. Sci. Ser. B, 2011, 278(1713), 1786-1793 10.1098/rspb.2010.2114Search in Google Scholar PubMed PubMed Central

[29] Croxall J.P., Silk J.R.D., Phillips R.A., Afanasyev V., Briggs D.R., Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses, Science, 2005, 307(5707), 249-250 10.1126/science.1106042Search in Google Scholar PubMed

[30] Catry P., Dias M.P., Phillips R.A., Granadeiro J.P., Different means to the same end: long-distance migrant seabirds from two colonies differ in behaviour, despite common wintering grounds,PLoS One, 2011, 6(10), e26079 10.1371/journal.pone.0026079Search in Google Scholar PubMed PubMed Central

[31] Phillips R.A., Silk J.R.D., Croxall J.P., Afanasyev V., Briggs D.R., Accuracy of geolocation estimates for flying seabirds, Mar. Ecol., 2004, 266, 265-272 10.3354/meps266265Search in Google Scholar

[32] Bridge E.S., Kelly J.F., Contina A., Gabrielson R.M., MacCurdy R.B., Winkler D.W., Advances in tracking small migratory birds: a technical review of light-level geolocation, J. Field Ornithol., 2013, 84(2), 121-137 10.1111/jofo.12011Search in Google Scholar

[33] Lisovski S., Hewson C.M., Klaassen R.H.G., Korner-Nievergelt F., Kristensen M.W., Hahn S., Geolocation by light: accuracy and precision affected by environmental factors, Methods Ecol. Evol., 2012, 3(3), 603-612 10.1111/j.2041-210X.2012.00185.xSearch in Google Scholar

[34] Atlas R., R.N. Hoffman, S.C. Bloom, J.C. Jusem, Ardizzone J., A multiyear global surface wind velocity data set using SSM/I wind observations, Bull. Am. Met. Soc., 1996, 77, 869-882 10.1175/1520-0477(1996)077<0869:AMGSWV>2.0.CO;2Search in Google Scholar

[35] Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G., Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 2007, 20(22), 5473-5496 10.1175/2007JCLI1824.1Search in Google Scholar

[36] Behrenfeld M.J., Falkowski P.G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 1997, 42(1), 1-20 10.4319/lo.1997.42.1.0001Search in Google Scholar

[37] Fisher N.I., Lee A.J., Regression models for an angular response, Biometrics, 1992, 48(3), 665-677 10.2307/2532334Search in Google Scholar

[38] Thorup K., Bisson I.-A., Bowlin M.S., Holland R.A., Wingfield J.C., Ramenofsky M., et al., Evidence for a navigational map stretching across the continental U.S. in a migratory songbird, Proc. Natl. Acad. Sci. U. S. A., 2007, 104(46), 18115-18119 10.1073/pnas.0704734104Search in Google Scholar

[39] Zuur A.F., Ieno E.N., Smith G.M., Analysing ecological data. Statistics for biology and health, Springer-Verlag, New York, 2007 10.1007/978-0-387-45972-1Search in Google Scholar

[40] Lewis F., Butler A., Gilbert L., A unified approach to model selection using the likelihood ratio test, Methods Ecol. Evol., 2011, 2(2), 155-162 10.1111/j.2041-210X.2010.00063.xSearch in Google Scholar

[41] Arnold T.W., Uninformative parameters and model selection using Akaike’s Information Criterion, The Journal of Wildlife Management, 2010, 74(6), 1175-1178 10.1111/j.1937-2817.2010.tb01236.xSearch in Google Scholar

[42] Nilsson C., Klaassen R.H.G., Alerstam T., Differences in speed and duration of bird migration between spring and autumn, Am. Nat., 2013, 181(6), 837-845 10.1086/670335Search in Google Scholar

[43] Gastineau G., Le Treut H., Li L., Hadley circulation changes under global warming conditions indicated by coupled climate models, Tellus Ser. A-Dyn. Meterol. Oceanol., 2008, 60(5), 863-884 10.1111/j.1600-0870.2008.00344.xSearch in Google Scholar

[44] Weimerskirch H., Louzao M., de Grissac S., Delord K., Changes in wind pattern alter albatross distribution and life-history traits, Science, 2012, 335(6065), 211-214 10.1126/science.1210270Search in Google Scholar PubMed

[45] Woollings T., Blackburn M., The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns, J. Clim., 2012, 25(3), 886-902 10.1175/JCLI-D-11-00087.1Search in Google Scholar

[46] Drent R.H., The timing of birds’ breeding seasons: the Perrins hypothesis revisited especially for migrants, Ardea, 2006, 94(3), 305-322 Search in Google Scholar

[47] Møller A.P., Rubolini D., Lehikoinen E., Populations of migratory bird species that did not show a phenological response to climate change are declining, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(42), 16195-16200 10.1073/pnas.0803825105Search in Google Scholar PubMed PubMed Central

[48] van Etten J., Hijmans R.J., A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants, PLoS One, 2010, 5(8), e12060 10.1371/journal.pone.0012060Search in Google Scholar PubMed PubMed Central

[49] Jonsen I.D., Basson M., Bestley S., Bravington M.V., Patterson T.A., Pedersen M.W., et al., State-space models for bio-loggers: a methodological road map, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 2013, 88-89, 34-46 10.1016/j.dsr2.2012.07.008Search in Google Scholar

[50] Newton I., Weather-related mass-mortality events in migrants, Ibis, 2007, 149(3), 453-467 10.1111/j.1474-919X.2007.00704.xSearch in Google Scholar

[51] Peterson A., Soberón J., Pearson R.G., Anderson R.P., Martínez- Meyer E., Nakamura M., et al., Ecological niches and geographic distributions. Monographs in population biology. Princeton University Press, Princeton, NJ, USA, 2011 10.23943/princeton/9780691136868.003.0003Search in Google Scholar

Received: 2015-01-19
Accepted: 2015-10-11
Published Online: 2015-11-11
Published in Print: 2015-01-01

© 2015 Christopher Michael Hensz

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.12.2023 from
Scroll to top button