Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 2, 2019

Migratory state is not associated with differences in neural glucocorticoid or mineralocorticoid receptor expression in pine siskins

  • Heather E. Watts EMAIL logo , Jeffrey L. Rittenhouse , Kendra B. Sewall and J. Michael Bowers
From the journal Animal Migration

Abstract

Although the endocrine system likely plays an important role in orchestrating the transition to a migratory state, the specific mechanisms by which this occurs remain poorly understood. Changes in glucocorticoid signaling are one proposed mechanism that may be important in migratory transitions. Although previous work has focused on the role of changes in circulating glucocorticoids, another potential mechanism is changes in the expression of its cognate receptors. Here, we test this hypothesis by comparing mRNA expression of the genes for the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in two brain regions implicated in the regulation of migratory behavior (the hippocampus and hypothalamus) in pine siskins (Spinus pinus) sampled before or after the transition to a spring nomadic migratory state. Compared to pre-migratory birds, migratory birds had body conditions more indicative of physiological preparations for migration (e.g., larger body mass), and greater levels of nocturnal migratory restlessness. However, we found no differences between pre-migratory and migratory birds in the expression of GR or MR mRNA in either the hippocampus or hypothalamus. Thus, differences in expression of receptors for glucocorticoids do not appear to underly the observed differences in physiology and behavior across a migratory transition. Taken together with previous results showing no change in circulating corticosterone levels during this transition, our findings provide no evidence for a role of glucocorticoid signaling in the spring migratory transition of this species.

References

[1] Jacobs J.D., Wingfield J.C. 2000 Endocrine Control of Life-Cycle Stages: A Constraint on Response to the Environment? Condor, 102, 35-5110.1093/condor/102.1.35Search in Google Scholar

[2] Goldman B.D. 1999 The circadian timing system and reproduction in mammals. Steroids, 64, 679-68510.1016/S0039-128X(99)00052-5Search in Google Scholar

[3] Paul Matthew J., Zucker I., Schwartz William J. 2008 Tracking the seasons: the internal calendars of vertebrates. Philos. Trans. Roy. Soc. B., 363, 341-36110.1098/rstb.2007.2143Search in Google Scholar PubMed PubMed Central

[4] Riters L.V., Alger S.J. 2011 Hormonal Regulation of Avian Courtship and Mating Behaviors. In Hormones and Reproduction of Vertebrates (eds. Norris D.O., Lopez K.H.), pp. 153-180. London, Academic Press.10.1016/B978-0-12-374932-1.00044-5Search in Google Scholar

[5] Watts H.E., Cornelius J.M., Fudickar A.M., Pérez J., Ramenofsky M. 2018 Understanding variation in migratory movements: A mechanistic approach. Gen. Comp. Endocrinol., 256, 112-12210.1016/j.ygcen.2017.07.027Search in Google Scholar PubMed

[6] Munakata A., Amano M., Ikuta K., Kitamura S., Aida K. 2007 Effects of growth hormone and cortisol on the downstream migratory behavior in masu salmon, Oncorhynchus masou. Gen. Comp. Endocrinol., 150, 12-1710.1016/j.ygcen.2006.07.009Search in Google Scholar PubMed

[7] Carruth L.L., Jones R.E., Norris D.O. 2002 Cortisol and Pacific Salmon: A New Look at the Role of Stress Hormones in Olfaction and Home-stream Migration. Integr. Comp. Biol., 42, 574-58110.1093/icb/42.3.574Search in Google Scholar PubMed

[8] Wingfield J.C., Ramenofsky M. 1997 Corticosterone and facultative dispersal in response to unpredictable events. Ardea, 85, 155-166Search in Google Scholar

[9] Cornelius J.M., Boswell T., Jenni-Eiermann S., Breuner C.W., Ramenofsky M. 2013 Contributions of endocrinology to the migration life history of birds. Gen. Comp. Endocrinol., 190, 47-6010.1016/j.ygcen.2013.03.027Search in Google Scholar PubMed

[10] Eikenaar C., Müller F., Leutgeb C., Hessler S., Lebus K., Taylor P.D., Schmaljohann H. 2017 Corticosterone and timing of migratory departure in a songbird. Proc. Roy. Soc. B., 284,10.1098/rspb.2016.2300Search in Google Scholar PubMed PubMed Central

[11] Holberton R.L. 1999 Changes in patterns of corticosterone secretion concurrent with migratory fattening in a neotropical migratory bird. Gen. Comp. Endocrinol., 116, 49-5810.1006/gcen.1999.7336Search in Google Scholar PubMed

[12] Lõhmus M., Sundström L.F., Moore F.R. 2006 Non-invasive corticosterone treatment changes foraging intensity in red-eyed vireos Vireo olivaceus. J. Avian Biol., 37, 523-52610.1111/j.0908-8857.2006.03733.xSearch in Google Scholar

[13] Landys M.M., Ramenofsky M., Guglielmo C.G., Wingfield J.C. 2004 The low-affinity glucocorticoid receptor regulates feeding and lipid breakdown in the migratory Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. J. Exp. Biol., 207, 143-15410.1242/jeb.00734Search in Google Scholar PubMed

[14] Lõhmus M., Sandberg R., Holberton R., R.Moore F. 2003 Corticosterone levels in relation to migratory readiness in red-eyed vireos (Vireo olivaceus). Behav. Ecol. Sociobiol., 54, 233-23910.1007/s00265-003-0618-zSearch in Google Scholar

[15] Landys-Ciannelli M.M., Ramenofsky M., Piersma T., Jukema J., Wingfield J.C., Group C.R. 2002 Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit, Limosa lapponica. Physiol. Biochem. Zool., 75, 101-11010.1086/338285Search in Google Scholar PubMed

[16] Falsone K., Jenni-Eiermann S., Jenni L. 2009 Corticosterone in migrating songbirds during endurance flight. Horm. Behav., 56, 548-55610.1016/j.yhbeh.2009.09.009Search in Google Scholar PubMed

[17] Pravosudov V.V. 2003 Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc. Roy. Soc. B., 270, 2599-260410.1098/rspb.2003.2551Search in Google Scholar PubMed PubMed Central

[18] Eikenaar C., Ballstaedt E., Hessler S., Klinner T., Müller F., Schmaljohann H. 2018 Cues, corticosterone and departure decisions in a partial migrant. Gen. Comp. Endocrinol., 261, 59-6610.1016/j.ygcen.2018.01.023Search in Google Scholar PubMed

[19] Wingfield J.C. 2018 Environmental Endocrinology: Insights into the Diversity of Regulatory Mechanisms in Life Cycles. Integr. Comp. Biol., 58, 790-79910.1093/icb/icy081Search in Google Scholar PubMed

[20] Rensel M.A., Schlinger B.A. 2016 Determinants and significance of corticosterone regulation in the songbird brain. Gen. Comp. Endocrinol., 227, 136-14210.1016/j.ygcen.2015.06.010Search in Google Scholar PubMed PubMed Central

[21] Horton B.M., Hudson W.H., Ortlund E.A., Shirk S., Thomas J.W., Young E.R., Zinzow-Kramer W.M., Maney D.L. 2014 Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl. Acad. Sci. U.S.A., 111, 144310.1073/pnas.1317165111Search in Google Scholar PubMed PubMed Central

[22] Rosvall K.A., Bergeon Burns C.M., Barske J., Goodson J.L., Schlinger B.A., Sengelaub D.R., Ketterson E.D. 2012 Neural sensitivity to sex steroids predicts individual differences in aggression: implications for behavioural evolution. Proc. Roy. Soc. B., 279, 354710.1098/rspb.2012.0442Search in Google Scholar

[23] Szyf M., Weaver I.C.G., Champagne F.A., Diorio J., Meaney M.J. 2005 Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front. Neuroendocrinol., 26, 139-16210.1016/j.yfrne.2005.10.002Search in Google Scholar

[24] Breuner C.W., Orchinik M. 2009 Pharmacological characterization of intracellular, membrane, and plasma binding sites for corticosterone in house sparrows. Gen. Comp. Endocrinol., 163, 214-22410.1016/j.ygcen.2009.01.027Search in Google Scholar

[25] Schmidt K.L., Malisch J.L., Breuner C.W., Soma K.K. 2010 Corticosterone and cortisol binding sites in plasma, immune organs and brain of developing zebra finches: Intracellular and membrane-associated receptors. Brain, Behav., Immun., 24, 908-91810.1016/j.bbi.2010.02.008Search in Google Scholar

[26] Lattin C.R., Waldron-Francis K., Richardson J.W., de Bruijn R., Bauer C.M., Breuner C.W., Romero L.M. 2012 Pharmacological characterization of intracellular glucocorticoid receptors in nine tissues from house sparrow (Passer domesticus). Gen. Comp. Endocrinol., 179, 214-22010.1016/j.ygcen.2012.08.007Search in Google Scholar

[27] Landys M.M., Ramenofsky M., Wingfield J.C. 2006 Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol., 148, 132-14910.1016/j.ygcen.2006.02.013Search in Google Scholar

[28] Groeneweg F.L., Karst H., de Kloet E.R., Joëls M. 2012 Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol. Cell. Endocrinol., 350, 299-30910.1016/j.mce.2011.06.020Search in Google Scholar

[29] Cristol D.A., Reynolds E.B., Leclerc J.E., Donner A.H., Farabaugh C.S., Ziegenfus C.W.S. 2003 Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics. Anim. Behav., 66, 317-32810.1006/anbe.2003.2194Search in Google Scholar

[30] Pravosudov V.V., Kitaysky A.S., Omanska A. 2006 The relationship between migratory behaviour, memory and the hippocampus: an intraspecific comparison. Proc. Roy. Soc. B., 273, 2641-264910.1098/rspb.2006.3624Search in Google Scholar

[31] Healy S.D., Gwinner E., Krebs J.R. 1996 Hippocampal volume in migratory and non-migratory warblers: effects of age and experience. Behav. Brain Res., 81, 61-6810.1016/S0166-4328(96)00044-7Search in Google Scholar

[32] Mouritsen H., Heyers D., Güntürkün O. 2016 The Neural Basis of Long-Distance Navigation in Birds. Annu. Rev. Physiol., 78, 133-15410.1146/annurev-physiol-021115-105054Search in Google Scholar PubMed

[33] Kuenzel W.J., Helms C.W. 1970 Hyperphagia, Polydipsia, and Other Effects of Hypothalamic Lesions in the White-Throated Sparrow, Zonotrichia albicollis. Condor, 72, 66-7510.2307/1366476Search in Google Scholar

[34] Kuenzel W.J. 1974 Multiple effects of ventromedial hypothalamic lesions in the white-throated sparrow, Zonotrichia albicollis. Journal of Comparative Physiology, 90, 169-18210.1007/BF00694483Search in Google Scholar

[35] Rastogi A., Kumari Y., Rani S., Kumar V. 2013 Neural Correlates of Migration: Activation of Hypothalamic Clock(s) in and out of Migratory State in the Blackheaded Bunting (Emberiza melanocephala). PLoS One, 8, e7006510.1371/journal.pone.0070065Search in Google Scholar PubMed PubMed Central

[36] Senft R.A., Meddle S.L., Baugh A.T. 2016 Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major). PloS one, 11, e0148516-e014851610.1371/journal.pone.0148516Search in Google Scholar PubMed PubMed Central

[37] Banerjee S.B., Arterbery A.S., Fergus D.J., Adkins-Regan E. 2012 Deprivation of maternal care has long-lasting consequences for the hypothalamic–pituitary–adrenal axis of zebra finches. Proc. Roy. Soc. B., 279, 759-76610.1098/rspb.2011.1265Search in Google Scholar PubMed PubMed Central

[38] Katz A., Oyama R.K., Feng N., Chen X., Schlinger B.A. 2010 11β-hydroxysteroid dehydrogenase type 2 in zebra finch brain and peripheral tissues. Gen. Comp. Endocrinol., 166, 600-60510.1016/j.ygcen.2010.01.016Search in Google Scholar PubMed

[39] Cornelius J.M., Perreau G., Bishop V.R., Krause J.S., Smith R., Hahn T.P., Meddle S.L. 2018 Social information changes stress hormone receptor expression in the songbird brain. Horm. Behav., 97, 31-3810.1016/j.yhbeh.2017.10.002Search in Google Scholar PubMed PubMed Central

[40] Krause J.S., McGuigan M.A., Bishop V.R., Wingfield J.C., Meddle S.L. 2015 Decreases in Mineralocorticoid but not Glucocorticoid Receptor mRNA Expression During the Short Arctic Breeding Season in Free-Living Gambel’s White-Crowned Sparrow (Zonotrichia leucophrys gambelii). J. Neuroendocrinol., 27, 66-7510.1111/jne.12237Search in Google Scholar PubMed

[41] Hodgson Zoë G., Meddle Simone L., Roberts Mark L., Buchanan Katherine L., Evans Matthew R., Metzdorf R., Gahr M., Healy Susan D. 2007 Spatial ability is impaired and hippocampal mineralocorticoid receptor mRNA expression reduced in zebra finches (Taeniopygia guttata) selected for acute high corticosterone response to stress. Proc. Roy. Soc. B., 274, 239-24510.1098/rspb.2006.3704Search in Google Scholar PubMed PubMed Central

[42] Yunick R.P. 1983 Winter site fidelity of some northern finches (Fringillidae). J. Field Ornithol., 54, 254-258Search in Google Scholar

[43] Dawson W.R. 2014 Pine siskin (Spinus pinus). In The Birds of North America Online (ed. Poole A.). Ithaca, Cornell Lab of Ornithology; http://bna.birds.cornell.edu/bna/species/280.Search in Google Scholar

[44] Brewer A.D., Diamond A.W., Woodsroth E.J., Collins B.T., Dunn E.H. Canadian Atlas of Bird Banding, Volume 1: Doves, Cuckoos, and Hummingbirds through Passerines, 1921-1995, second edition [online], Canadian Wildlife Service Special Publication. Environment Canada. http://www.ec.gc.ca/aobc-cabb/?lang=En, 2006Search in Google Scholar

[45] Robart A.R., McGuire M.M.K., Watts H.E. 2018 Increasing photoperiod stimulates the initiation of spring migratory behaviour and physiology in a facultative migrant, the pine siskin. R. Soc. Open Sci., 5, 18087610.1098/rsos.180876Search in Google Scholar

[46] Watts H.E., Robart A.R., Chopra J.K., Asinas C.E., Hahn T.P., Ramenofsky M. 2017 Seasonal expression of migratory behavior in a facultative migrant, the pine siskin. Behav. Ecol. Sociobiol., 71, 910.1007/s00265-016-2248-2Search in Google Scholar

[47] Robart A.R., Morado M.I., Watts H.E. 2019 Declining food availability, corticosterone, and migratory response in a nomadic, irruptive migrant. Horm. Behav., 110, 56-6710.1016/j.yhbeh.2019.02.007Search in Google Scholar

[48] Altmann J. 1974 Observational study of behavior: sampling methods. Behaviour, 49, 227-26710.1163/156853974X00534Search in Google Scholar

[49] Wingfield J.C., Schwabl H., Mattocks Jr. P.W. 1990 Endocrine mechanisms of migration. In Bird Migration (ed. Gwinner E.), pp. 232-256. Berlin, Germany, Springer-Verlag.10.1007/978-3-642-74542-3_16Search in Google Scholar

[50] Bairlein F. Manual of Field Methods, European-African Songbird Migration Network., European Science Foundation, Wilhelmshaven, Germany, 1995Search in Google Scholar

[51] Sewall K.B., Caro S.P., Sockman K.W. 2013 Song Competition Affects Monoamine Levels in Sensory and Motor Forebrain Regions of Male Lincoln’s Sparrows (Melospiza lincolnii). PLoS One, 8, e5985710.1371/journal.pone.0059857Search in Google Scholar

[52] Stokes T.M., Leonard C.M., Nottebohm F. 1974 The telecephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J. Comp. Neurol., 156, 337-37410.1002/cne.901560305Search in Google Scholar

[53] R Core Team. 2018 R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org.Search in Google Scholar

[54] Navarro D.J. 2015 Learning statistics with R: A tutorial for psychology students and other beginners. (Version 0.5) University of Adelaide. Adelaide, Australia.Search in Google Scholar

[55] Mangiafico S. 2018 rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.0.3. https://CRAN.R-project.org/package=rcompanion.Search in Google Scholar

[56] Eikenaar C., Klinner T., Szostek K.L., Bairlein F. 2014 Migratory restlessness in captive individuals predicts actual departure in the wild. Biol. Lett., 10,10.1098/rsbl.2014.0154Search in Google Scholar

[57] Maier T., Güell M., Serrano L. 2009 Correlation of mRNA and protein in complex biological samples. FEBS Lett., 583, 3966-397310.1016/j.febslet.2009.10.036Search in Google Scholar

[58] Wingfield J.C., Matt K.S., Farner D.S. 1984 Physiologic properties of steroid hormone-binding proteins in avian blood. Gen. Comp. Endocrinol., 53, 281-29210.1016/0016-6480(84)90254-5Search in Google Scholar

[59] Breuner C.W., Orchinik M. 2002 Plasma binding proteins as mediators of corticosteroid action in vertebrates. J. Endocrinol., 175, 99-11210.1677/joe.0.1750099Search in Google Scholar

[60] Kuenzel W.J., van Tienhoven A. 1982 Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J. Comp. Neurol., 206, 293-31310.1002/cne.902060309Search in Google Scholar

[61] Bauer C.M., Fudickar A.M., Anderson-Buckingham S., Abolins-Abols M., Atwell J.W., Ketterson E.D., Greives T.J. 2018 Seasonally sympatric but allochronic: differential expression of hypothalamic genes in a songbird during gonadal development. Proc. Roy. Soc. B., 285, 2018173510.1098/rspb.2018.1735Search in Google Scholar

[62] de Kloet E.R., Vreugdenhil E., Oitzl M.S., Joëls M. 1998 Brain Corticosteroid Receptor Balance in Health and Disease. Endocr. Rev., 19, 269-30110.1210/edrv.19.3.0331Search in Google Scholar

[63] Trapp T., Rupprecht R., Castrén M., Reul J.M.H.M., Holsboer F. 1994 Heterodimerization between mineralocorticoid and glucocorticoid receptor: A new principle of glucocorticoid action in the CNS. Neuron, 13, 1457-146210.1016/0896-6273(94)90431-6Search in Google Scholar

[64] Jacobson L., Sapolsky R. 1991 The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis. Endocr. Rev., 12, 118-13410.1210/edrv-12-2-118Search in Google Scholar PubMed

[65] Gough G.A., Sauer J.R., Iliff M. 1998 Version 97.1. Patuxent Wildlife Research Center, Laurel, MD. http://www.mbr-pwrc.usgs.gov/infocenter.html.Search in Google Scholar

Received: 2019-06-28
Accepted: 2019-09-06
Published Online: 2019-12-02

© 2019 Heather E. Watts et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 8.12.2023 from https://www.degruyter.com/document/doi/10.1515/ami-2019-0001/html
Scroll to top button