Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access December 22, 2021

First evidence of diverging migration and overwintering strategies in glaucous gulls (Larus hyperboreus) from the Canadian Arctic

  • Julia E. Baak EMAIL logo , Allison Patterson , H. Grant Gilchrist and Kyle H. Elliott
From the journal Animal Migration

Abstract

Many seabird populations differ in their migration strategies, where individuals travel in different directions to separate wintering areas. These migratory strategies may expose individuals to different threats, thus understanding migratory connectivity is crucial to assess risks to populations. Glaucous gulls (Larus hyperboreus) are generalist predators with flexible migratory behaviour that may alter these behaviours in response to climate change and anthropogenic activities, such as access to landfills, yet little is known about their migration. We deployed GPS and GLS tracking devices on glaucous gulls from Coats Island, Nunavut, Canada to obtain the first insights into their migration and habitat use outside of the breeding season. Gulls used two migration strategies during the non-breeding season, where one migrated as far as the Sea of Okhotsk in the Pacific and the remainder (n = 7) wintered in the North Atlantic. Gulls primarily overwintered in pelagic (56%) and coastal (38%) habitats. While in coastal habitats, one gull visited one landfill once, but visits increased with a 1 km and 3 km buffer, suggesting that urban glaucous gulls primarily used non-landfill habitats. This research can be used as a baseline to explore changes in migratory behaviour and inform future conservation of Arctic-breeding gulls.

References

[1] Frederiksen M., Descamps S., Erikstad K.E., Gaston A.J., Gilchrist H.G., Grémillet D., et al., Migration and wintering of a declining seabird, the thick-billed murre Uria lomvia, on an ocean basin scale: Conservation implications, Biol. Conserv., 2016, 200, 26–3510.1016/j.biocon.2016.05.011Search in Google Scholar

[2] Yurkowski D.J., Auger-Méthé M., Mallory M.L., Wong S.N.P., Gilchrist G., Derocher A.E., et al., Abundance and species diversity hotspots of tracked marine predators across the North American Arctic, Divers. Distrib., 2019, 25, 328–34510.1111/ddi.12860Search in Google Scholar

[3] Parsons M., Mitchell I., Butler A., Ratcliffe N., Frederiksen M., Foster S., et al., Seabirds as indicators of the marine environment, ICES J Mar Sci, 2008, 65, 1520–152610.1093/icesjms/fsn155Search in Google Scholar

[4] Spencer N.C., Gilchrist H.G., Strøm H., Allard K.A., Mallory M.L., Key winter habitat of the ivory gull Pagophila eburnea in the Canadian Arctic, Endanger. Species Res., 2016, 31, 33–4510.3354/esr00747Search in Google Scholar

[5] Gutowsky S.E., Hipfner J.M., Maftei M., Boyd S., Auger-Méthé M., Yurkowski D.J., et al., First insights into Thayer’s Gull Larus glaucoides thayeri migratory and overwinter patterns along the Northeast Pacific coast, Mar. Ornithol., 2020, 48, 9–16Search in Google Scholar

[6] Baert J.M., Stienen E.W.M., Heylen B.C., Kavelaars M.M., Buijs R.-J., Shamoun-Baranes J., et al., High-resolution GPS tracking reveals sex differences in migratory behaviour and stopover habitat use in the Lesser Black-backed Gull Larus fuscus, Scientific Reports, 2018, 8, 539110.1038/s41598-018-23605-xSearch in Google Scholar PubMed PubMed Central

[7] Davis S.E., Maftei M., Mallory M.L., Migratory connectivity at high latitudes: Sabine’s gulls (Xema sabini) from a colony in the Canadian High Arctic migrate to different oceans, PLOS ONE, 2016, 11, e016604310.1371/journal.pone.0166043Search in Google Scholar PubMed PubMed Central

[8] Humphries G.R.W., Huettmann F., Putting models to a good use: a rapid assessment of Arctic seabird biodiversity indicates potential conflicts with shipping lanes and human activity, Divers. Distrib., 2014, 20, 478–49010.1111/ddi.12177Search in Google Scholar

[9] Gentes M.-L., Letcher R.J., Caron-Beaudoin É., Verreault J., Novel flame retardants in urban-feeding ring-billed gulls from the St. Lawrence River, Canada, Environ. Sci. Technol., 2012, 46, 9735–974410.1021/es302099fSearch in Google Scholar PubMed

[10] Perry A.L., Low P.J., Ellis J.R., Reynolds J.D., Climate change and distribution shifts in marine fishes, Science, 2005, 308, 1912–191510.1126/science.1111322Search in Google Scholar PubMed

[11] Hunt G.L., Renner M., Kuletz K.J., Salo S., Eisner L., Ressler P.H., et al., Timing of sea-ice retreat affects the distribution of seabirds and their prey in the southeastern Bering Sea, Mar. Ecol. Prog. Ser., 2018, 593, 209–23010.3354/meps12383Search in Google Scholar

[12] Hazen E.L., Jorgensen S., Rykaczewski R.R., Bograd S.J., Foley D.G., Jonsen I.D., et al., Predicted habitat shifts of Pacific top predators in a changing climate, Nat. Clim. Change, 2013, 3, 234–23810.1038/nclimate1686Search in Google Scholar

[13] Weiser E., Gilchrist H.G., Glaucous Gull (Larus hyperboreus), version 1.0, In: Billerman, S.M. (Ed.), Birds of the World, Cornell Lab of Ornithology, Ithaca, NY, USA, 202010.2173/bow.glagul.01Search in Google Scholar

[14] Weiser E.L., Powell A.N., Does garbage in the diet improve reproductive output of glaucous gulls?, Condor, 2010, 112, 530–53810.1525/cond.2010.100020Search in Google Scholar

[15] Kerric A., Okeme J., Jantunen L., Giroux J.-F., Diamond M.L., Verreault J., Spatial and temporal variations of halogenated flame retardants and organophosphate esters in landfill air: Potential linkages with gull exposure, Environ. Pollut., 2021, 271, 11639610.1016/j.envpol.2020.116396Search in Google Scholar PubMed

[16] Verreault J., Letcher R.J., Gentes M.-L., Braune B.M., Unusually high Deca-BDE concentrations and new flame retardants in a Canadian Arctic top predator, the glaucous gull, Sci. Total Environ., 2018, 639, 977–98710.1016/j.scitotenv.2018.05.222Search in Google Scholar PubMed

[17] Verreault J., Bech C., Letcher R.J., Ropstad E., Dahl E., Gabrielsen G.W., Organohalogen contamination in breeding glaucous gulls from the Norwegian Arctic: Associations with basal metabolism and circulating thyroid hormones, Environ. Pollut., 2007, 145, 138–14510.1016/j.envpol.2006.03.049Search in Google Scholar PubMed

[18] Bush E., Lemmen D.S. (Eds.), Canada’s changing climate report, Government of Canada, Ottawa, ON, 201910.4095/314614Search in Google Scholar

[19] Ng A.K.Y., Andrews J., Babb D., Lin Y., Becker A., Implications of climate change for shipping: Opening the Arctic seas, Wiley Interdiscip. Rev. Clim. Change, 2018, 9, e50710.1002/wcc.507Search in Google Scholar

[20] Francis D., Coats Island, The Canadian Encyclopedia, 2015Search in Google Scholar

[21] Gaston A.J., Ouellet H., Birds and mammals of Coats Island, N.W.T., Arctic, 1997, 50, 101–11810.14430/arctic1094Search in Google Scholar

[22] Mallory M.L., Gaston A.J., Provencher J.F., Wong S.N.P., Anderson C., Elliott K.H., et al., Identifying key marine habitat sites for seabirds and sea ducks in the Canadian Arctic, Environ. Rev., 2019, 27, 215–24010.1139/er-2018-0067Search in Google Scholar

[23] Birds Canada, Coats Island/Cape Pembroke Northern Hudson Bay, Nunavut, IBA Canada: Important Bird Areas, 2004Search in Google Scholar

[24] Mallory M.L., Fontaine A.J., Key marine habitat sites for migratory birds in Nunavut and the Northwest Territories, Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, ON, 2004Search in Google Scholar

[25] Mallory M.L., Gilbert C.D., Leg-loop harness design for attaching external transmitters to seabirds, Mar. Ornithol., 2008, 36, 183–188Search in Google Scholar

[26] Lisovski S.S., Wotherspoon S.J., Sumner M.D., TwGeos: Basic data processing for light-level geolocation archival tags, R Package Version 0.1, 2016, 2Search in Google Scholar

[27] Merkel B., Phillips R.A., Descamps S., Yoccoz N.G., Moe B., Strøm H., A probabilistic algorithm to process geolocation data, Mov. Ecol., 2016, 4, 2610.1186/s40462-016-0091-8Search in Google Scholar

[28] Calenge C., The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals, Ecol. Modell., 2006, 197, 516–51910.1016/j.ecolmodel.2006.03.017Search in Google Scholar

[29] Fieberg J., Kochanny C.O., Quantifying home-range overlap: The importance of the utilization distribution, J. Wildl. Manage., 2005, 69, 1346–135910.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2Search in Google Scholar

[30] R Core Team, R: A language and environment for statistical computing., R Foundations of Statistical Computing, Vienna, Austria, 2018Search in Google Scholar

[31] Shaffer S.A., Tremblay Y., Awkerman J.A., Henry R.W., Teo S.L.H., Anderson D.J., et al., Comparison of light- and SST-based geolocation with satellite telemetry in free-ranging albatrosses, Mar. Biol., 2005, 147, 833–84310.1007/s00227-005-1631-8Search in Google Scholar

[32] Wessel P., Smith W.H.F., A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. Solid Earth, 1996, 101, 8741–874310.1029/96JB00104Search in Google Scholar

[33] McFarlane Tranquilla L., Montevecchi W., Hedd A., Fifield D., Burke C., Smith P., et al., Multiple-colony winter habitat use by murres Uria spp. in the Northwest Atlantic Ocean: implications for marine risk assessment, Mar. Ecol. Prog. Ser., 2013, 472, 287–30310.3354/meps10053Search in Google Scholar

[34] ESRI, ArcMap software, ESRI, Toronto, ON, 2019Search in Google Scholar

[35] Government of Canada, Constructions and land use in Canada - CanVec – Man-Made Features, Government of Canada, Natural Resources Canada, Earth Sciences Sector, 2017Search in Google Scholar

[36] Elliott K.H., Duffe J., Lee S.L., Mineau P., Elliott J.E., Foraging ecology of bald eagles at an urban landfill, Wilson J. Ornithol., 2006, 118, 380–39010.1676/04-126.1Search in Google Scholar

[37] Harvey M., Starr M., Therriault J.-C., Saucier F., Gosselin M., MERICA-Nord Program: Monitoring and research in the Hudson Bay complex, AZMP Bulletin, 2006, 5, 27–32Search in Google Scholar

[38] Bogdanova M.I., Daunt F., Newell M., Phillips R.A., Harris M.P., Wanless S., Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution, Proc. Royal Soc. B., 2011, 278, 2412–241810.1098/rspb.2010.2601Search in Google Scholar

[39] González-Solís J., Smyrli M., Militão T., Gremillet D., Tveraa T., Phillips R.A., et al., Combining stable isotope analyses and geolocation to reveal kittiwake migration, Mar. Ecol. Prog. Ser., 2011, 435, 251–26110.3354/meps09233Search in Google Scholar

[40] Maftei M., Davis S.E., Mallory M.L., Confirmation of a wintering ground of Ross’s Gull Rhodostethia rosea in the northern Labrador Sea, Ibis, 2015, 157, 642–64710.1111/ibi.12261Search in Google Scholar

[41] Canadian Ice Service, Seasonal Summary Eastern Canada: Winter 2017-2018, Environment and Climate Change Canada, Ontario, Canada, 2018Search in Google Scholar

[42] Orben R.A., Paredes R., Roby D.D., Irons D.B., Shaffer S.A., Wintering North Pacific black-legged kittiwakes balance spatial flexibility and consistency, Mov. Ecol., 2015, 3, 3610.1186/s40462-015-0059-0Search in Google Scholar PubMed PubMed Central

[43] Bemmelen R. van, Moe B., Hanssen S.A., Schmidt N.M., Hansen J., Lang J., et al., Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua, Mar. Ecol. Prog. Ser., 2017, 578, 197–21110.3354/meps12010Search in Google Scholar

[44] Henningsson S.S., Alerstam T., Barriers and distances as determinants for the evolution of bird migration links: the arctic shorebird system, Proc. Royal Soc. B., 2005, 272, 2251–225810.1098/rspb.2005.3221Search in Google Scholar PubMed PubMed Central

[45] Clavel J., Julliard R., Devictor V., Worldwide decline of specialist species: toward a global functional homogenization?, Front. Ecol. Environ., 2011, 9, 222–22810.1890/080216Search in Google Scholar

[46] eBird, eBird: An online database of bird distribution and abundance [web application]. Cornell Lab of Ornithology, Ithaca, NY., 2021Search in Google Scholar

[47] Environment and Climate Chance Canada, Eastern Canada Seabirds at Sea (ECSAS) database, 2021Search in Google Scholar

[48] Callaghan C.T., Nakagawa S., Cornwell W.K., Global abundance estimates for 9,700 bird species, Proc. Natl. Acad. Sci. U. S. A., 2021, 11810.1073/pnas.2023170118Search in Google Scholar PubMed PubMed Central

[49] Sorais M., Spiegel O., Mazerolle M.J., Giroux J.-F., Verreault J., Gulls foraging in landfills: Does atmospheric exposure to halogenated flame retardants result in bioaccumulation?, Environ. Int., 2021, 147, 10636910.1016/j.envint.2020.106369Search in Google Scholar PubMed

[50] Seif S., Provencher J.F., Avery-Gomm S., Daoust P.Y., Mallory M.L., Smith P.A., Plastic and non-plastic debris ingestion in three gull species feeding in an urban landfill environment, Arch. Environ. Contam. Toxicol., 2018, 74, 349–36010.1007/s00244-017-0492-8Search in Google Scholar PubMed

[51] Jambeck J.R., Geyer R., Wilcox C., Siegler T.R., Perryman M., Andrady A., et al., Plastic waste inputs from land into the ocean, Science, 2015, 347, 768–77110.1126/science.1260352Search in Google Scholar PubMed

[52] Brown L., Rosabal M., Sorais M., Poirier A., Widory D., Verreault J., Habitat use strategy influences the tissue signature of trace elements including rare earth elements in an urban-adapted omnivorous bird, Environ. Res., 2019, 168, 261–26910.1016/j.envres.2018.10.004Search in Google Scholar PubMed

[53] Moe B., Stempniewicz L., Jakubas D., Angelier F., Chastel O., Dinessen F., et al., Climate change and phenological responses of two seabird species breeding in the high-Arctic, Mar. Ecol. Prog. Ser., 2009, 393, 235–24610.3354/meps08222Search in Google Scholar

[54] Harwood L.A., Smith T.G., George J.C., Sandstrom S.J., Walkusz W., Divoky G.J., Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species, Prog. Oceanogr., 2015, 136, 263–27310.1016/j.pocean.2015.05.003Search in Google Scholar

[55] Baak J.E., Patterson A., Gilchrist H.G., Elliott K.H., 2021. Data from: First evidence of diverging migration and overwintering strategies in glaucous gulls (Larus hyperboreus) from the Canadian Arctic. Movebank Data Repository. doi:10.5441/001/1.tj948m64Search in Google Scholar

Received: 2021-06-23
Accepted: 2021-08-08
Published Online: 2021-12-22

© 2021 Julia E. Baak et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 8.6.2023 from https://www.degruyter.com/document/doi/10.1515/ami-2020-0107/html
Scroll to top button