Prescribing the Scalar Curvature under Minimal Boundary Conditions on the Half Sphere*

Mohamed Ben Ayed
Department de Mathematiques
Faculte des Sciences de Sfax, Route Soukra, Sfax, Tunisia
e-mail: Mohamed.Benayed@fst.rnu.tn

Khalil El Mehdi
Centre de Mathematique
Ecole Polytechnique, 91128 Palaiseau, France
e-mail: elmehdi@math.polytechnique.fr

and

Mohameden Ould Ahmedou
Mathematisches Institut
Beringstrasse 4, D-53115 Bonn, Germany
e-mail: ahmedou@math.uni-bonn.de

Received 10 January 2002
Communicated by Abbas Bahri

Abstract

This paper is devoted to the problem of prescribing the scalar curvature under zero boundary conditions. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results on the standard half sphere

*The main part of this work was done while the authors enjoyed the hospitality of Mathematisches Forschungsinstitut at Oberwolfach. Their stay was supported by Volkswagen-Stiftung (RIP-Program at Oberwolfach)
Key words. Variational problems, Lack of compactness, Scalar curvature, Conformal invariance, Critical points at infinity

1 Introduction and the main results

In this paper we study some nonlinear problem arising from conformal geometry. Precisely, consider a Riemannian manifold with boundary \((M^n, g)\) of dimension \(n \geq 3\) and take \(\tilde{g} = u^{4/(n-2)}g\), be a conformal metric to \(g\), where \(u\) is a smooth positive function, then the following equations relate the scalar curvatures \(R_g, R_{\tilde{g}}\) and the mean curvatures of the boundary \(h_g, h_{\tilde{g}}\), with respect to \(g\) and \(\tilde{g}\) respectively.

\[
\begin{align*}
(P_1) \quad \begin{cases}
- c_n \Delta_g u + R_g u &= R_{\tilde{g}} u^{\frac{n+2}{n-2}} \quad \text{in } M \\
\frac{2}{n-2} \frac{\partial u}{\partial v} + h_g u &= h_{\tilde{g}} u^{\frac{n}{n-2}} \quad \text{on } \partial M
\end{cases}
\end{align*}
\]

where \(c_n = 4(n - 1)/(n - 2)\) and \(v\) denotes the outward normal vector with respect to the metric \(g\).

In view of the above equations, a natural question is whether it is possible to prescribe both the scalar curvature and the boundary mean curvature, that is: given two functions \(K : M \to \mathbb{R}\) and \(H : \partial M \to \mathbb{R}\), does exists a metric \(\tilde{g}\) conformally equivalent to \(g\) such that \(R_{\tilde{g}} = K\) and \(h_{\tilde{g}} = H\)?

According to equations \((P_1)\), the problem is equivalent to finding a smooth positive solution \(u\) of the following equation

\[
\begin{align*}
(P_2) \quad \begin{cases}
- c_n \Delta_g u + R_g u &= K u^{\frac{n+2}{n-2}} \quad \text{in } M \\
\frac{2}{n-2} \frac{\partial u}{\partial v} + h_g u &= H u^{\frac{n}{n-2}} \quad \text{on } \partial M.
\end{cases}
\end{align*}
\]

Such a problem was studied in [1] [14],[15] [16], [17], [18], [19] [21]. Yanyan Li [21], and Djadli-Malchiodi-Ould Ahmedou [15] studied this problem when the manifold is the three dimensional standard half sphere. Their approach involves a fine blow up analysis of some subcritical approximations and the use of the topological degree tools.

Regarding the above problem it is well known that the most interesting case is the so called positive one, that is when the quadratic part of the associated Euler functional is positive definite. Another interesting case is when a noncompact group of conformal transformations acts on the equation leading to topological obstructions. The half sphere represents the simplest case where such a noncompactness occurs, and in this paper we consider the case of the standard half sphere under minimal boundary conditions:

More precisely, let

\[
S^n_+ = \{ x \in \mathbb{R}^{n+1} / |x| = 1, \ x_{n+1} > 0 \}
\]

\(n \geq 3\). Given a \(C^2\) function \(K\) on \(S^n_+\), we look for conditions on \(K\) to ensure the
existence of a positive solution of the problem

\[
\begin{aligned}
-\Delta_g u + \frac{n(n-2)}{4} u &= Ku^{\frac{n+2}{n-2}} & \text{in } S_+^n \\
\frac{\partial u}{\partial n} &= 0 & \text{on } \partial S_+^n
\end{aligned}
\]

where \(g \) is the standard metric of \(S_+^n \).

Problem (1) is in some sense related to the well known scalar curvature problem on \(S^n \)

\[
-\Delta_g u + \frac{n(n-2)}{4} u = Ku^{\frac{n+2}{n-2}} & \text{ in } S^n
\]

to which much work has been devoted. For details please see [3],[5], [8],[9], [13], [12], [20], [22], [23],[27] and the references therein.

As for (2), there are topological obstructions of Kazdan-Warner type to solve (1) (see [10]) and so a natural question arises: under which conditions on \(K \), (1) has a positive solution. We propose to handle such a question, using some topological and dynamical tools of the theory of critical points at infinity, see Bahri [3], [4].

Our approach follows closely the ideas developed in Aubin-Bahri [2], Bahri [3] and Ben Ayed-Chtioui-Hammami [9] where the problem of prescribing the scalar curvature on closed manifolds was studied using some algebraic topological tools. The main idea is to use the difference of topology between the level sets of the function \(K \) to produce a critical point of the Euler functional \(J \) associated to (1) and the main issue is under which conditions on \(K \), a topological accident between the level sets of \(K \) induces a topological accident between the level sets of \(J \). Such an accident is sufficient to prove the existence of a critical point when some compactness conditions are satisfied. However our problem presents a lack of compactness due to the presence of critical points at infinity, that is noncompact orbits for the gradient of \(J \) along which \(J \) is bounded and its gradient goes to zero. Therefore a careful study of such noncompact orbits is necessary, in order to take into account their contribution to the difference of topology between the level sets of \(J \).

In order to state our main results, we need to introduce the assumptions that we are using in our results.

\((A_1) \) We assume that \(K_1 = K|_{\partial S_+^n} \) has only nondegenerate critical points \(y_0, ..., y_s \), where \(y_0 \) is the absolute maximum, such that

\[
K(y_0) \geq K(y_1) \geq ... \geq K(y_l) > K(y_{l+1}) \geq ... \geq K(y_s)
\]

with

\[
\frac{\partial K}{\partial n}(y_i) > 0, \text{ for } 0 \leq i \leq l, \quad \frac{\partial K}{\partial n}(y_i) \leq 0, \text{ for } l + 1 \leq i \leq s.
\]

\((A_2) \) Assume that there exists \(c \) a positive constant such that \(c < K(y_l) \), and every \(y \) critical point of \(K, K(y) < c \).

\((A_3) \) Let \(Z \) be a pseudogradient of \(K_1 \), of Morse-Smale type (that is the intersections of the stable and the unstable manifolds of the critical points of \(K_1 \) are transverse.)

Set

\[
X = \bigcup_{0 \leq i \leq l} W_s(y_i)
\]
where $W_s(y_i)$ is the stable manifold of y_i for Z.

We assume that X is not contractible and denote by m the dimension of the first nontrivial reduced homological group.

(A4) Assume that X is contractible in $K^c = \{ x \in S^m / K(x) \geq c \}$, where c is defined in the assumption (A2).

Now, we are able to state our first main results.

Theorem 1.1 Assume that $n \geq 4$. Then, under the assumptions (A1), (A2), (A3), (A4), there exists a constant c_0 independent of K such that if $K(y_0)/c \leq 1 + c_0$, then (1) has a solution.

Corollary 1.1 The solution obtained in Theorem 1.1 has an augmented Morse index $\geq m$.

Next, we state another kind of existence results for problem (1) based on a "topological invariant" for some Yamabe type problems introduced by Bahri see [3]. To state these results, we need to introduce the assumptions that we will be using and some notations.

(H1) We assume that K_1 has only nondegenerate critical points and we assume that there exists $y_0 \in \partial S^m$ such that y_0 is the absolute maximum of K_1 and $(\partial K/\partial \nu)(y_0) > 0$.

(H2) $W_s(y_i) \cap W_u(y_j) = \emptyset$ for any i such that $(\partial K/\partial \nu)(y_i) > 0$ and for any j such that $(\partial K/\partial \nu)(y_j) < 0$.

For $k \in \{1, 2, ..., n-1\}$, we define X as

\[X = \overline{W_s(y_i_0)} \]

where y_i_0 satisfies

\[K_1(y_i_0) = \max\{ K_1(y_i), \text{ / ind}(y_i) = n-1-k, (\partial K/\partial \nu)(y_i) > 0 \} \]

(Here ind(y_i) denotes the Morse index of y_i for the function K_1).

(H3) We assume that X is without boundary.

We denote by $C_{y_0}(X)$ the following set

\[C_{y_0}(X) = \{ \alpha \delta_{y_0} + (1-\alpha)\delta_x / \alpha \in [0,1], x \in X \}. \]

For λ large enough, we introduce a map $f_\lambda : C_{y_0}(X) \rightarrow \Sigma^+$, defined by

\[C_{y_0}(X) \ni (\alpha \delta_{y_0} + (1-\alpha)\delta_x) \rightarrow \frac{\alpha \delta_{y_0, \lambda} + (1-\alpha)\delta_{x, \lambda}}{|\alpha \delta_{y_0, \lambda} + (1-\alpha)\delta_{x, \lambda}|} \in \Sigma^+. \]

Then $C_{y_0}(X)$ and $f_\lambda(C_{y_0}(X))$ are manifolds in dimension $k+1$, that is, their singularities arise in dimension $k-1$ and lower, see [3]. Observe that $C_{y_0}(X)$ and $f_\lambda(C_{y_0}(X))$ are contractible while X is not contractible.

For λ large enough, we also define the intersection number (modulo 2) of $f_\lambda(C_{y_0}(X))$ with $W_s(y_0, y_i_0) = \infty$

\[\mu(y_0) = f_\lambda(C_{y_0}(X)).W_s(y_0, y_i_0) = \infty \]
Scalar curvature on the half sphere

where \(W_s(y_0, y_{i0})_\infty \) is the stable manifold of \((y_0, y_{i0})_\infty \) for a decreasing pseudogradient \(V \) for \(J \) which is transverse to \(f_\lambda(C_{y_0}(X)) \). Thus this number is well defined [25].

We then have the following result:

Theorem 1.2 Assume that \(n \geq 4 \). Under assumptions \((H_1), (H_2)\) and \((H_3) \), if \(\mu(y_0) = 0 \) then \((1)\) has a solution of index \(k \) or \(k + 1 \).

Now, we state a statement more general than Theorem 1.2. For this we define \(X \) to be

\[
X = \bigcup_{y_i \in B_k} W_s(y_i),
\]

with \(B_k = \{ y_i / \text{ind}(y_i) = n - 1 - k \text{ and } (\partial K/\partial v)(y_i) > 0 \} \).

For \(y_i \in B_k \), we define, for \(\lambda \) large enough, the intersection number (modulo 2)

\[
\mu_i(y_0) = f_\lambda(C_{y_0}(X)).W_s(y_0, y_i)_\infty.
\]

By the above arguments, this number is well defined [25].

Then we have the following theorem

Theorem 1.3 Assume that \(n \geq 4 \). Under assumptions \((H_1), (H_2)\) and \((H_3) \), if \(\mu_i = 0 \) for each \(y_i \in B_k \), then \((1)\) has a solution of index \(k \) or \(k + 1 \).

The remainder of the present paper is organized as follows. In section 2, we set up the variational structure and recall some preliminaries. In section 3, we perform an expansion of the Euler functional associated to \((1)\) and its gradient near the potential critical points at infinity, then we prove a Morse Lemma at infinity in section 4. In section 5, we provide the proof of Theorem 1.1 and Corollary 1.1, while section 6 is devoted to the proof of Theorems 1.2 and 1.3.

2 Variational structure and preliminaries

In this section we recall the functional setting and the variational problem and its main features. Problem \((1)\) has a variational structure. The functional is

\[
J(u) = \frac{\int_{S^n^+} |\nabla u|^2 + \frac{n(n-2)}{4} \int_{S^n_+} u^2}{\left(\int_{S^n_+} Ku^n \right)^{\frac{n-2}{n}}}
\]

deﬁned on \(H^1(S^n_+, \mathbb{R}) \) equeipped with the norm

\[
||u||^2 = \int_{S^n_+} |\nabla u|^2 + \frac{n(n-2)}{4} \int_{S^n_+} u^2.
\]

We denote by \(\Sigma \) the unit sphere of \(H^1(S^n_+, \mathbb{R}) \) and we set \(\Sigma^+ = \{ u \in \Sigma / u \geq 0 \} \).

The Palais-Smale condition fails to be satisﬁed for \(J \) on \(\Sigma^+ \). Its failure has been studied by various authors (see Brezis-Coron [11], Lions [24], Struwe [28]).
In order to characterize the sequences failing the Palais-Smale condition, we need to introduce some notations.

For \(a \in S^+_T \) and \(\lambda > 0 \), let

\[
\bar{d}_{a,\lambda}(x) = c_0 \frac{\lambda^{\frac{n-2}{2}}}{(\lambda^2 + 1 + (\lambda^2 - 1) \cos d(a,x))^\frac{n-2}{2}}
\]

where \(d \) is the geodesic distance on \((S^+_n, g)\) and \(c_0 \) is chosen so that

\[
-\Delta \bar{d}_{a,\lambda} + \frac{n(n-2)}{4} \bar{d}_{a,\lambda} = \frac{n+2}{2} \bar{d}_{a,\lambda} \quad \text{in} \ S^+_n.
\]

For \(\epsilon > 0 \) and \(p \in \mathbb{N}^* \), let us define

\[
V(p, \epsilon) = \{ u \in \Sigma^+/ \exists a_1, \ldots, a_p \in S^+_n, \exists \lambda_1, \ldots, \lambda_p > 0, \exists \alpha_1, \ldots, \alpha_p > 0 \\
\text{s.t. } ||u - \sum_{i=1}^{p} \alpha_i \bar{d}_i|| < \epsilon \text{ and } |\frac{\alpha_i^{\frac{4}{n-2}} K(a_i)}{\alpha_j^{\frac{4}{n-2}} K(a_j)} - 1| < \epsilon, \\
\lambda_i > \epsilon^{-1}, \epsilon_i < \epsilon \text{ and } \lambda_i d_i < \epsilon \text{ or } \lambda_i d_i > \epsilon^{-1} \}
\]

where \(\bar{d}_i = \bar{d}_{a_i, \lambda_i}, \ d_i = d(a_i, \partial S^+_n) \) and \(\epsilon_i = (\lambda_i/\lambda_j + \lambda_j/\lambda_i + \lambda_i \lambda_j d^2(a_i, a_j))^{\frac{n}{n-2}} \).

The failure of Palais-Smale condition can be described as follows:

Proposition 2.1 (see [6], [24] and [28]) Assume that \(J \) has no critical point in \(\Sigma^+ \) and let \((u_k) \in \Sigma^+ \) be a sequence such that \(J(u_k) \) is bounded and \(\nabla J(u_k) \to 0 \). Then, there exist an integer \(p \in \mathbb{N}^* \), a sequence \(\epsilon_k > 0 (\epsilon_k \to 0) \) and an extracted subsequence of \(u_k \), again denoted \((u_k) \), such that \(u_k \in V(p, \epsilon_k) \).

Now, we consider the following subset of \(V(p, \epsilon) \)

\[
V_b(p, \epsilon) = \{ u \in V(p, \epsilon) / \lambda_i d_i < \epsilon \}.
\]

The following lemma defines a parametrization of the set \(V_b(p, \epsilon) \).

Lemma 2.1 (see [4], [6], [26]) There is \(\epsilon_0 > 0 \) such that if \(\epsilon < \epsilon_0 \) and \(u \in V_b(p, \epsilon) \), then the problem

\[
\text{min}\{ ||u - \sum_{i=1}^{p} \alpha_i \bar{d}_i||, \ \alpha_i > 0, \ \lambda_i > 0, \ \alpha_i \in \partial S^+_n \}
\]

has a unique solution (up to permutation). In particular, we can write \(u \in V_b(p, \epsilon) \) as follows

\[
u = \sum_{i=1}^{p} \bar{\alpha}_i \bar{\lambda}_i + v,
\]

where \((\bar{\alpha}_1, ..., \bar{\alpha}_p, \bar{\lambda}_1, ..., \bar{\lambda}_p) \) is the solution of the minimization problem and where \(v \in H^1(S^+_n) \) such that for each \(i = 1, \ldots, p \)

\[(v, \bar{\delta}_i) = (v, \partial \bar{\delta}_i / \partial \lambda_i) = (v, \partial \bar{\delta}_i / \partial a_i) = 0.
\]
Here $(.,.)$ denoted the scalar inner defined on $H^1(S^n_+)$ by
\[
(u, v) = \int_{S^n_+} \nabla u \nabla v + \frac{n(n-2)}{4} \int_{S^n_+} uv.
\]

Before ending this section, we mention that it will be convenient to perform some stereographic projection in order to reduce our problem to \mathbb{R}^n. Let $D^{1,2}(\mathbb{R}^n_+)$ denote the completion of $C_c^\infty(\mathbb{R}^n_+)$ with respect to Dirichlet norm. The stereographic projection π_a through a point $a \in \partial S^n_+$ induces an isometry $i : H^1(S^n_+) \to D^{1,2}(\mathbb{R}^n_+)$ according to the following formula
\[
(iv)(x) = \left(\frac{2}{1 + |x|^2} \right)^{(n-2)/2} v(\pi_a^{-1}(x)), \quad v \in H^1(S^n_+), \ x \in \mathbb{R}^n.
\]

In particular, one can check that the following holds true, for every $v \in H^1(S^n_+)$
\[
\int_{S^n_+} (|\nabla v|^2 + \frac{n(n-2)}{4} v^2) = \int_{\mathbb{R}^n_+} |\nabla (iv)|^2 \quad \text{and} \quad \int_{S^n_+} |v|^\frac{2n}{n-2} = \int_{\mathbb{R}^n_+} |iv|^\frac{2n}{n-2}.
\]

In the sequel, we will identify the function K and its composition with the stereographic projection π_a. We will also identify a point b of S^n_+ and its image by π_a. These facts will be assumed as understood in the sequel.

3 Expansion of J and its gradient at infinity

This section is devoted to an useful expansion of J and its gradient near a potential boundary critical point at infinity consisting of two masses.

Proposition 3.1 For $\varepsilon > 0$ small enough and $u = \sum_{i=1}^2 \alpha_i \delta_{a_i, \lambda_i} + v \in V_b(2, \varepsilon)$, we have the following expansion
\[
J(u) = \frac{(\alpha_1^2 + \alpha_2^2)(S/n/2)^{(2/n)}}{(\alpha_1^{2n/3} K(a_1) + \alpha_2^{2n/3} K(a_2))^{n-2}} \left[1 + \frac{4(n-2)}{n} - \frac{2}{\beta} \sum_{i=1}^2 \frac{\alpha_i^{\frac{2n}{n-2}}}{\lambda_i} \partial K(a_i) + \frac{1}{\gamma} + \frac{1}{\beta} \left(\sum_{i=1}^2 \alpha_i^{\frac{2n}{n-2}} K(a_i) \right) + f(v) + Q(v, v) \right] + O \left(\varepsilon_1^{\frac{n}{n-2}} \log(\varepsilon_1^{-1}) + \sum_{i=1}^2 \left(\frac{1}{\lambda_i^2} + \frac{\varepsilon_{12}^{12}}{\lambda_i} (\log(\varepsilon_1^{-1}) \frac{n-2}{n}) + \|v\|^{\inf(3, \frac{2n}{n-2})} \right) \right],
\]
where
\[Q(v, v) = \frac{1}{\gamma} \|v\|^2 - \frac{n + 2}{n - 2} \beta \int_{S^+_n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{n+2}{n}} v^2, \]
\[f(v) = -\frac{2}{\beta} \int_{S^+_n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{n+2}{n}} v, \]
\[S_n = c_0^{\frac{2n}{n-2}} \int_{\mathbb{R}^n} \frac{dx}{(1 + |x|^2)^{n}}, \]
\[\beta = \frac{S_n}{2} (\alpha_1^2 K(a_1) + \alpha_2^2 K(a_2)), \]
\[\gamma = \frac{S_n}{2} (\alpha_1^2 + \alpha_2^2), \]
\[c_1 = c_0^{\frac{2n}{n-2}} \int_{\mathbb{R}^n} \frac{x_n dx}{(1 + |x|^2)^{n}}, \]
\[c_2 = c_0^{\frac{2n}{n-2}} \int_{\mathbb{R}^n} \frac{dx}{(1 + |x|^2)^{n+\frac{2}{n}}}. \]

Proof. We need to estimate
\[N(u) = \|u\|^2 \text{ and } D^{\frac{n}{n-2}} = \int_{S^+_n} K(x) u^{\frac{2n}{n-2}}. \]

In order to simplify the notations, in the remainder, we write \(\bar{\delta}_i \) instead of \(\bar{\delta}_{a_i, \lambda_i} \).

We now have

\[N(u) = \alpha_1^2 \|\bar{\delta}_1\|^2 + \alpha_2^2 \|\bar{\delta}_2\|^2 + \|v\|^2 + 2\alpha_1 \alpha_2 \left(\int_{S^+_n} \nabla \bar{\delta}_1 \nabla \bar{\delta}_2 + \frac{n(n-2)}{4} \int_{S^+_n} \bar{\delta}_1 \bar{\delta}_2 \right). \]

Observe that

\[\|\bar{\delta}\|^2 = \int_{\mathbb{R}^n_+} |
\nabla \bar{\delta}|^2 = \frac{S_n}{2} \]

and

\[\int_{S^+_n} \nabla \bar{\delta}_1 \nabla \bar{\delta}_2 + \frac{n(n-2)}{4} \int_{S^+_n} \bar{\delta}_1 \bar{\delta}_2 = \int_{\mathbb{R}^n} \bar{\delta}_1 \bar{\delta}_2 = \int_{\mathbb{R}^n} \bar{\delta}_1 \bar{\delta}_2 = \int_{\mathbb{R}^n} \delta_2 \delta_2 \]

where \(\delta_i \) denotes \(\delta_{a_i, \lambda_i} \) and, for \(a \in \mathbb{R}^n \) and \(\lambda > 0 \), \(\delta_{a, \lambda} \) denotes the family of solutions of Yamabe problem on \(\mathbb{R}^n \) defined by

\[\delta_{a, \lambda}(x) = c_0 \frac{\lambda^{\frac{n-2}{2}}}{(1 + \lambda^2 |x-a|^2)^{\frac{n+2}{2}}} \]

A computation similar to the one performed in [4]) shows that

\[\int_{\mathbb{R}^n} \delta_1^{\frac{n+2}{n-2}} \delta_2 = \frac{1}{2} c_2 \epsilon_{12} + O(\epsilon_{12}^{\frac{n}{n-2}} \log(\epsilon_{12}^{-1})). \]

Thus

\[N = \gamma + \alpha_1 \alpha_2 c_2 \epsilon_{12} + \|v\|^2 + O(\epsilon_{12}^{\frac{n}{n-2}} \log(\epsilon_{12}^{-1})). \]
For the denominator, we write
\[
D_n = \int_{S^n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{2n}{n-2}} + \frac{2n}{n-2} \int_{S^n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{n+2}{n-2}} v \\
+ \frac{n(n+2)}{(n-2)^2} \int_{S^n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{4}{n-2}} v^2 \\
+ O\left(\int_{S^n} (\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{4}{n-2} - 1} \inf((\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2), |v|)^3 + \int |v|^{\frac{2n}{n-2}}\right).
\]

We also write
\[
\int_{S^n} K(\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{2n}{n-2}} = \int_{S^n} K(\alpha_1 \bar{\delta}_1)^{\frac{2n}{n-2}} + \int_{S^n} K(\alpha_2 \bar{\delta}_2)^{\frac{2n}{n-2}} + \frac{2n}{n-2} \int_{S^n} K(\alpha_1 \bar{\delta}_1)^{\frac{n+2}{n-2}} \alpha_2 \bar{\delta}_2 \\
+ \frac{2n}{n-2} \int_{S^n} K(\alpha_2 \bar{\delta}_2)^{\frac{n+2}{n-2}} \alpha_1 \bar{\delta}_1 + O\left(\int_{S^n} \sup(\bar{\delta}_1, \bar{\delta}_2)^{\frac{4}{n-2}} \inf(\bar{\delta}_1, \bar{\delta}_2)^2\right).
\]

Expansions of K around a_1 and a_2 give
\[
\int_{S^n} K(\bar{\delta}_i)^{\frac{2n}{n-2}} = K(a_i) \frac{S^n}{2} - \frac{2c_1}{\lambda_i} \frac{\partial K}{\partial \nu}(a_i) + O\left(\frac{1}{\lambda_i^2}\right) \tag{3.3}
\]
\[
\int_{S^n} K(\bar{\delta}_i)^{\frac{n+2}{n-2}} \delta_j = K(a_i) \frac{\epsilon_{12}}{2} \epsilon_{12} + O\left(\frac{\epsilon_{12}}{\lambda_i^2} \log(\epsilon_{12}^{-1}) + \frac{\epsilon_{12}}{\lambda_i^2} (\log(\epsilon_{12}^{-1}))^{\frac{n-2}{2}}\right) \tag{3.4}
\]

It is easy to check
\[
\int_{S^n} \frac{4}{\sup(\bar{\delta}_1, \bar{\delta}_2)} \inf(\bar{\delta}_1, \bar{\delta}_2) = O\left(\epsilon_{12}^{\frac{2n}{n-2}} \log(\epsilon_{12}^{-1})\right) \text{ if } n \geq 4 \tag{3.5}
\]
and
\[
\int_{S^n} (\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2)^{\frac{4}{n-2} - 1} \inf((\alpha_1 \bar{\delta}_1 + \alpha_2 \bar{\delta}_2), |v|)^3 + \int |v|^{\frac{2n}{n-2}} = O\left(||v||^{\inf(3, \frac{2n}{n-2})}\right) \tag{3.6}
\]

Combining (3.1),(3.2), (3.3), (3.4), (3.5) and (3.6), we easily derive our proposition. \hfill \Box

A natural improvement of Proposition 3.1 is obtained by taking care of the v-part, in order to show that it can be neglected with respect to the concentration phenomenon.

Set
\[
E_\epsilon = \{v \in H^1(S^n_+) / ||v|| \leq \epsilon \text{ and } v \text{ satisfies (V0)}\}
\]

where (V0) is the following condition
\[
(V_0) \quad (v, \bar{\delta}_i) = (v, \partial \bar{\delta}_i/\partial \lambda_i) = (\bar{v}, \partial \bar{\delta}_i/\partial a_i) = 0, \text{ for } i = 1, 2.
\]
Notice that, one can prove arguing as in [4] (see also [26]), that for \(\varepsilon \) small enough, there exists \(\rho > 0 \) such that for all \(v \in E_\varepsilon \)

\[Q(v, v) \geq \rho ||v||^2. \]

It follows the following lemma whose proof is similar, up to minor modifications to corresponding statements in [4] (see also [26]).

Lemma 3.1 There exists a \(C^1 \)-map which, to each \((\alpha, a, \lambda)\) such that \(\alpha_1 \delta_1 + \alpha_2 \delta_2 \in V_\varepsilon(2, \varepsilon) \) with small \(\varepsilon \), associates \(\overline{v} = \overline{v}_{(\alpha, a, \lambda)} \) satisfying

\[J(\alpha_1 \delta_1 + \alpha_2 \delta_2 + \overline{v}) = \min \{ J(\alpha_1 \delta_1 + \alpha_2 \delta_2 + v), \ v \ satisfies \ \ (V_\varepsilon) \}. \]

Moreover, there exists \(c > 0 \) such that the following holds

\[||\overline{v}|| \leq c \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \varepsilon \frac{n+2}{\varepsilon^{12}} \log(\varepsilon^{-1}) \right) \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right). \]

Proposition 3.2 Let \(n \geq 4 \), for \(u = \alpha_1 \delta_1 + \alpha_2 \delta_2 \in V_\varepsilon(2, \varepsilon) \), we have the following expansion

\[
(\nabla J(u), \lambda_1 \partial \delta_1 / \partial \lambda_1) = 2 J(u) \left[\frac{c_2}{2} \alpha_2 \lambda_1 \frac{\partial \epsilon_{12}}{\partial \lambda_1} (1 - J(u)) \frac{n-2}{\lambda_1} (K(a_1) + K(a_2)) \right. \\
- 2 J(u) \frac{n-2}{\lambda_1} \alpha_1 \frac{n+1}{\lambda_1} c_3 \frac{\partial K}{\partial \nu} (a_1) + O(\frac{1}{\lambda_1^2}) \\
+ O \left(\frac{n-2}{\lambda_1} \log(\varepsilon^{-1}) + \varepsilon \frac{n-2}{\lambda_1} (\frac{1}{\lambda_1} + \frac{1}{\lambda_2}) \right). \]

where \(c_3 = \frac{n-2}{2} c_0^{2n/(n-2)} \int_{R^+} \frac{x^n(1-x^n)}{(1+x^n)^{n+1}} dx \)

Proof. We have

\[
(\nabla J(u), h) = 2 J(u) \left[\int_{S^+} \nabla u \cdot \nabla h + \frac{n(n-2)}{4} \int_{S^+} uh - J(u) \frac{n-2}{n-2} \int_{S^+} Ku \frac{n-2}{n-2} h \right] \quad (3.7)
\]

Observe that (see [4])

\[
\int_{R^+} \nabla \delta_1 \cdot (\lambda_1 \frac{\partial \delta_1}{\partial \lambda_1}) = \int_{R^+} \delta_1^{n+2} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} = 0, \quad (3.8)
\]

\[
\int_{R^+} \nabla \delta_2 \cdot (\lambda_1 \frac{\partial \delta_1}{\partial \lambda_1}) = \int_{R^+} \delta_2^{n+2} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} \\
= \frac{1}{2} c_2 \lambda_1 \frac{\partial \epsilon_{12}}{\partial \lambda_1} + O \left(\frac{n-7}{\lambda_1} \log(\varepsilon^{-1}) \right), \quad (3.9)
\]

Scalar curvature on the half sphere

\[\int_{\mathbb{R}^n_+} K \delta_1^{\frac{n+2}{n-2}} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} = 2 \nabla K(a_1) \int_{\mathbb{R}^n_+} \delta_1^{\frac{n+2}{n-2}} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} (x - a_1) + O \left(\frac{1}{\lambda_1^2} \right) \]
\[= - \frac{2c_3}{\lambda_1} \nabla K(a)e_n + O \left(\frac{1}{\lambda_1^2} \right), \tag{3.10} \]

\[\int_{\mathbb{R}^n_+} K \delta_2^{\frac{n+2}{n-2}} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} = K(a_2) \frac{1}{2} c_2 \lambda_1 \frac{\partial \varepsilon_{12}}{\partial \lambda_1} + O \left(\frac{1}{\lambda_2} \varepsilon_{12} (\log(\varepsilon_{12})^{\frac{n-2}{n}}) \right) \]
\[+ O \left(\varepsilon_{12}^{\frac{n-2}{n}} \log(\varepsilon_{12}) \right), \tag{3.11} \]

\[\frac{n+2}{n-2} \int_{\mathbb{R}^n_+} K \delta_2^{\frac{n+2}{n-2}} \lambda_1 \frac{\partial \delta_1}{\partial \lambda_1} = K(a_1) \frac{1}{2} c_2 \lambda_1 \frac{\partial \varepsilon_{12}}{\partial \lambda_1} + O \left(\frac{1}{\lambda_2} \varepsilon_{12} (\log(\varepsilon_{12})^{\frac{n-2}{n}}) \right) \]
\[+ O \left(\varepsilon_{12}^{\frac{n-2}{n}} \log(\varepsilon_{12}) \right). \tag{3.12} \]

Combining (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12), we easily derive our proposition. \qed

Proposition 3.3 Let \(n \geq 4 \). For \(u = \sum \alpha_i \tilde{\delta}_i \in V_\delta(2, \epsilon) \), we have the following expansion:

\[
\left(\nabla J(u), \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} \right) = 2J(u)\alpha_1 e_n \left[c_4 \left(1 - J(u) \frac{n-2}{n-2} \alpha_1 \frac{\varepsilon_{12}}{n-2} K(a_1) \right) + J(u) \frac{n-2}{n-2} \alpha_1 \frac{\varepsilon_{12}}{n-2} c_5 \frac{\partial K}{\partial \nu} (a_1) \right] \\
- J(u)\alpha_2 c_2 \frac{1}{\lambda_1} \frac{\partial \varepsilon_{12}}{\partial a_1} \left(-1 + J(u) \frac{n-2}{n-2} \sum \alpha_i \frac{\varepsilon_{12}}{n-2} K(a_i) \right) \\
- 4J(u) \frac{2(n-1)}{n-2} \alpha_1 \frac{\varepsilon_{12}}{n-2} \frac{2c_5}{\lambda_1} \nabla T K(a_1) + O \left(\epsilon_{12}^{\frac{n-2}{n}} \log(\epsilon_{12}^{\frac{n-2}{n}}) + \epsilon_{12}^{\frac{n-1}{n}} \lambda_2 |a_1 - a_2| \right) \]
\[+ O \left(\epsilon_{12} \left(\log(\epsilon_{12}^{\frac{n-2}{n}}) \right) \frac{n-2}{n} \sum \frac{1}{\lambda_k} \right) + O \left(\frac{1}{\lambda_1^2} \right) \]

where

\[c_4 = (n-2)c_0^{\frac{2n}{n-2}} \int_{\mathbb{R}^n_+} \frac{x_n}{(1+|x|^2)^{n+1}} dx \quad \text{and} \quad c_5 = \frac{n-2}{2n} c_0^{\frac{2n}{n-2}} \int_{\mathbb{R}^n} \frac{x_n^2}{(1+|x|^2)^{n+1}} dx. \]

Proof. An easy computation shows

\[\int_{\mathbb{R}^n_+} \nabla \delta_1 \nabla \left(\frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} \right) = \int_{\mathbb{R}^n_+} \delta_1^{\frac{n+2}{n-2}} \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} = c_4 e_n, \tag{3.13} \]

\[\int_{\mathbb{R}^n_+} \nabla \delta_2 \nabla \left(\frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} \right) = \int_{\mathbb{R}^n_+} \delta_2^{\frac{n+2}{n-2}} \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} \]
\[= \frac{1}{2} \frac{c_2}{\lambda_1} \frac{\partial \varepsilon_{12}}{\partial a_1} + O \left(\epsilon_{12}^{\frac{n-2}{n}} \log(\epsilon_{12}^{\frac{n-2}{n}}) + \epsilon_{12}^{\frac{n+1}{n}} \lambda_2 |a_1 - a_2| \right). \tag{3.14} \]
Using (3.13), (3.14), (3.15), (3.16) and (3.17), our proposition follows.

\[\int_{\mathbb{R}^n_+} K\delta_1^{n+2} \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} = K(a_1)c_4 e_n + 2 \frac{c_6}{\lambda_1} \nabla K(a_1) + O\left(\frac{1}{\lambda_1^2}\right), \quad (3.15) \]

\[\int_{\mathbb{R}^n_+} K\delta_2^{n+2} \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} = K(a_2) \frac{1}{2} c_2 \frac{1}{\lambda_1} \frac{\partial \epsilon_{12}}{\partial a_1} + O\left(\frac{\epsilon_{12}^{n+2}}{\epsilon_{12}^2 \lambda_2 |a_1 - a_2|}\right) + O\left(\epsilon_{12}^{n+2} \log(\epsilon_{12}^{-2})\right) + O\left(\frac{1}{\lambda_2} \epsilon_{12} \left(\log(\epsilon_{12}^{-1})\right)^{n+2}\right), \quad (3.16) \]

\[\frac{n+2}{n-2} \int_{\mathbb{R}^n_+} K\delta_1^{n+2} \delta_2 \frac{1}{\lambda_1} \frac{\partial \delta_1}{\partial a_1} = K(a_1) \frac{1}{2} c_2 \frac{1}{\lambda_1} \frac{\partial \epsilon_{12}}{\partial a_1} + O\left(\frac{\epsilon_{12}^{n+2}}{\epsilon_{12}^2 \lambda_2 |a_1 - a_2|}\right) + O\left(\epsilon_{12}^{n+2} \log(\epsilon_{12}^{-1})\right) + O\left(\frac{1}{\lambda_1} \epsilon_{12} \left(\log(\epsilon_{12}^{-1})\right)^{n+2}\right). \quad (3.17) \]

Proposition 3.4 For \(u = \sum \alpha_i \delta_i \in V_\theta(2, \epsilon) \), we have the following expansion:

\[(\nabla J(u), \delta_1) = 2J(u) c_1 \frac{S_n}{2} \left(1 - J(u) \frac{n+2}{2} \omega_1^{n-2} K(a_1) \right) + 2J(u) c_2 \frac{n+2}{2} \omega_1^{n-2} \frac{2c_6}{\lambda_1} \frac{\partial K}{\partial \nu}(a_1) \]

\[- J(u)c_2 \epsilon_{12} \alpha_2 \left(-1 + J(u) \frac{n+2}{n-2} \omega_1^{n-2} K(a_1) + \alpha_2 \omega_2^{n-2} K(a_2) \right) \]

\[+ O\left(\frac{1}{\lambda_1^2} + \epsilon_{12}^{n+2} \log(\epsilon_{12}^{-1}) + \frac{1}{\lambda_2} \epsilon_{12} \left(\log(\epsilon_{12}^{-1})\right)^{n+2}\right) \]

where \(c_6 = c_0 \int_{\mathbb{R}^n_+} \frac{x^n}{(1+|x|^2)^n} \, dx \) and where \(S_n \) is defined in Proposition 3.1.

Proof. Using estimates (3.1), (3.2), (3.3) and (3.4), we easily derive our proposition.

Before ending this section, we state the above results in the case where we have only one mass instead of two masses.

Proposition 3.5 For \(\epsilon > 0 \) small enough and \(u = \alpha \delta_{a, \lambda} + v \in V_\theta(1, \epsilon) \), we have the following expansion:

\[J(u) = \left(\frac{S_n}{2}\right)^{(2/n)} \left[1 + \frac{8c_1(n-2)}{nK(a)S_n} \frac{\partial K}{\partial \nu}(a) + f(v) \right] + O\left(\frac{1}{\lambda^2}\right) + O\left(||v||^{n\cdot\frac{2n}{n+2}}\right) \]

where

\[Q(v, v) = \frac{2}{\alpha^2 S_n} \left[||v||^2 - \frac{n+2}{(n-2)K(a)} \int_{S^+_n} K(\delta_{a, \lambda}) \frac{4}{n+2} v^2 \right] \]

\[f(v) = -\frac{4}{\alpha K(a) S_n} \int_{S^+_n} K(\delta_{a, \lambda}) \frac{4}{n+2} v. \]
Proposition 3.6 For \(u = \alpha \delta_{a,\lambda} \in V_b(1, \varepsilon) \), we have the following expansion:

\[
\left(\nabla J(u), \lambda \frac{\partial \delta}{\partial \lambda} \right) = -4J(u) \frac{2(n-1)}{n-2} \alpha^{\frac{n+2}{2}} c_3 \frac{\partial K}{\partial \nu}(a) + O \left(\frac{1}{\lambda^2} \right)
\]

Proposition 3.7 For \(u = u = \alpha \delta_{a,\lambda} \in V_b(1, \varepsilon) \), we have the following expansion:

\[
\left(\nabla J(u), \frac{1}{\lambda} \frac{\partial \delta}{\partial a} \right) = 2J(u) \alpha \left[c_4 \left(1 - J(u) \alpha^{\frac{n-2}{2}} K(a) \right) + 2c_5J(u) \alpha^{\frac{n-2}{2}} \frac{\partial K}{\partial \nu}(a) \right]
- 4J(u) \frac{2(n-1)}{n-2} \alpha^{\frac{n+2}{2}} \frac{\nabla_T K(a)}{\lambda} + O \left(\frac{1}{\lambda^2} \right).
\]

4 Morse Lemma at infinity

In this section, we consider the case where we only have one mass and we perform a Morse lemma at infinity for \(J \), which completely gets rid of the \(v \)-contribution and shows that the functional behaves, at infinity, as \(J(\alpha \delta_{\tilde{a},\tilde{\lambda}}) + |V|^2 \), where \(V \) is a variable completely independent of \(\tilde{a}, \tilde{\lambda} \). Namely, we prove the following proposition.

Proposition 4.1 For \(\varepsilon > 0 \) small enough, there is a diffeomorphism

\[
\alpha \delta_{a,\lambda} + v \mapsto \alpha \delta_{\tilde{a},\tilde{\lambda}} \in V_b(1, \varepsilon')
\]

for some \(\varepsilon' \) such that

\[
J(\alpha \delta_{a,\lambda} + v) = J(\alpha \delta_{\tilde{a},\tilde{\lambda}}) + |V|^2
\]

where \(V \) belongs to a neighborhood of zero in a fixed Hilbert space.

The above Morse Lemma can be improved when the concentration point is near a critical point \(y \) of \(K_1 = K_{\partial S^+} \) with \(\frac{\partial K}{\partial \nu}(y) > 0 \), leading to the following normal form:

Proposition 4.2 For \(u = \alpha \delta_{\tilde{a},\tilde{\lambda}} \in V_b(1, \varepsilon) \) such that \(\tilde{a} \in V(y, \rho) \), \(\frac{\partial K}{\partial \nu}(y) > 0 \), \(\rho > 0 \) and \(y \) is a critical point of \(K_1 \), there is another change of variable \((\tilde{a}, \tilde{\lambda}) \) such that

\[
J(u) = \psi(\tilde{a}, \tilde{\lambda})
:= \frac{(S_{\alpha}/2)^{\frac{n}{n-2}}}{(K(\tilde{a}))^{\frac{n}{n-2}}} \left[1 + (c - \eta) \frac{1}{\lambda} \frac{\partial K}{\partial \nu}(\tilde{a}) \right]
\]

where \(\eta \) is a small positive real.

Here and in the sequel, \(V(y, \rho) \) denotes a neighborhood of \(y \).

The proof of Propositions 4.1 and 4.2 can be easily deduced from the following lemma, arguing as in [3] and [8].
Lemma 4.1 There exists a pseudogradient Z so that the following holds.
There is a constant $c > 0$ independent of $u = \alpha \delta_{a,\lambda}$ in $V_b(1, \varepsilon)$ such that
i. $- (\nabla J(u), Z) \geq \frac{c}{\lambda}$
ii. $- (\nabla J(u + \tilde{v}), Z + \frac{\partial \delta}{\partial (\alpha, \alpha, \lambda)}(Z)) \geq \frac{c}{\lambda}$
iii. Z is bounded
iv. the only region where λ increases along Z is the region where $a \in \mathcal{V}(y, \rho)$, where y is a critical point of K_1 such that $\frac{\partial K}{\partial \nu}(y) > 0$.

Before giving the proof of Lemma 4.1, we notice that combining Proposition 4.2 and Lemma 4.1, one can easily derive the following corollary.

Corollary 4.1 Assume that J does not have any critical point. Then, the only critical points at infinity of J in $V_b(1, \varepsilon)$, for ε small enough, correspond to $\delta_{y, \infty}$, where y is a critical point of $K_1 = K_{1/\delta_{y}}$ such that $\frac{\partial K}{\partial \nu}(y) > 0$.
Moreover such a critical point at infinity has a Morse index equal to $(n - 1 - \text{index}(K_1, y))$.

Proof of Lemma 4.1 Let $u = \alpha \delta_{a,\lambda} \in V_b(1, \varepsilon)$. We divide $V_b(1, \varepsilon)$ in three regions.

1st region. $a \notin \cup_{0 \leq i \leq s} \mathcal{V}(y_i, \rho)$, where $\rho < \frac{1}{2} \min_{i \neq j} d(y_i, y_j)$.
Set $Z_1 = \frac{1}{\lambda} \delta_{a} \nabla_T K(a)$, from Proposition 3.7, we have

$$-(\nabla J(u), Z_1) = c \frac{|\nabla_T K(a)|^2}{\lambda} + O \left(\frac{1}{\lambda^2} \right) \geq \frac{c}{\lambda}$$

2nd region. $a \in \cup_{0 \leq i \leq l} \mathcal{V}(y_i, 2\rho)$.
We set

$$Z_2 = \lambda \frac{\partial \delta}{\partial \lambda} + \frac{1}{\lambda} \frac{\partial \delta}{\partial a} \nabla_T K(a).$$

Using Propositions 3.6 and 3.7, we obtain

$$-(\nabla J(u), Z_2) \geq c \frac{|\nabla_T K(a)|^2}{\lambda} + \frac{c}{\lambda} \frac{\partial K}{\partial \nu}(a) + O \left(\frac{1}{\lambda^2} \right) \geq \frac{c}{\lambda}.$$

3rd region. $a \in \cup_{l+1 \leq i \leq s} \mathcal{V}(y_i, 2\rho)$.
We set

$$Z_3 = -\lambda \frac{\partial \delta}{\partial \lambda}.$$

Using Proposition 3.6, we deduce that

$$-(\nabla J(u), Z_3) \geq -\frac{c}{\lambda} \frac{\partial K}{\partial \nu}(a) + O \left(\frac{1}{\lambda^2} \right) \geq \frac{c}{\lambda}.$$
Hence our global vector field will be built using a convex combination of Z_1, Z_2 and Z_3 and will satisfy obviously i., iii. and iv. Regarding the estimate ii., it can be obtained once we have i. arguing as in [3] and [8].

5 Proof of Theorem 1.1

Our proof follows the algebraic topological arguments introduced in [2]. Arguing by contradiction, we suppose that J has no critical points. It follows from Corollary 4.1, that under the assumptions of Theorem 1.1, the critical points at infinity of J under the level $c_1 = (S_n/2)^{\frac{n}{2}}(K(y))^{\frac{2-n}{n}} + \varepsilon$, for ε small enough, are in one to one correspondence with the critical points of $K_1 y_0, y_1, ..., y_i$. The unstable manifold at infinity of such critical points at infinity, $W_u(y_0), ..., W_u(y_i)$ can be described, using Proposition 4.2, as the product of $W_s(y_0), ..., W_s(y_i)$ (for a pseudogradient of K) by $[A, +\infty[$ domain of the variable λ, for some positive number A large enough.

Since J has no critical points, it follows that $J_{c_1} = \{u \in \sum^+ / J(u) \leq c_1\}$ retracts by deformation on $X_{\infty} = \bigcup_{0 \leq j \leq i} W_u(y_j)$ (see Sections 7 and 8 of [7]) which can be parametrized as we said before by $X \times [A, +\infty[.$

From another part, we have X_{∞} is contractible in $J_{c_2 + \varepsilon}$, where $c_2 = (S_n/2)^{\frac{n}{2}} c^{\frac{2-n}{n}}$. Indeed from (A4), it follows that there exists a contraction $h : [0, 1] \times X \rightarrow \mathbb{K}$, h continuous such that for any $a \in X$ $h(0, a) = a$ and $h(1, a) = a_0$ a point of X. Such a contraction gives rise to the following contraction $\tilde{h} : X_{\infty} \rightarrow \sum^+$ defined by

$$[0, 1] \times X \times [0, +\infty[\ni (t, a_1, \lambda_1) \mapsto \tilde{\delta}_{(h(t, a_1), \lambda_1)} + \tilde{\nu} \in \Sigma^+, \quad a_1 \in X, \quad \lambda_1 \geq A$$

For $t = 0$, $\tilde{\delta}_{(h(0, a_1), \lambda_1)} + \tilde{\nu} = \delta_{a_1, \lambda_1} + \nu \in X_{\infty}$. \tilde{h} is continuous and $\tilde{h}(1, a_1, \lambda_1) = \delta_{a_0, \lambda_1} + \tilde{\nu}$, hence our claim follows.

Now, using Proposition 3.5, we deduce that

$$J(\tilde{\delta}_{h(t, a_1), \lambda_1} + \tilde{\nu}) \sim (\frac{S_n}{2})^{\frac{n}{2}} (K(h(t, a_1)))^{\frac{2-n}{n}} (1 + O(A^{-2}))$$

where $K(h(t, a_1)) \geq c$ by construction.

Therefore such a contraction is performed under $c_2 + \varepsilon$, for A large enough, so X_{∞} is contractible in $J_{c_2 + \varepsilon}$.

In addition, choosing c_0 small enough, $J_{c_2 + \varepsilon}$ retracts by deformation on J_{c_1}, which retracts by deformation on X_{∞}, therefore X_{∞} is contractible leading to the contractibility of X, which is in contradiction with our assumption. Hence our theorem follows.

Before ending this section, we give the proof of Corollary 1.1.

Proof of Corollary 1.1 Arguing by contradiction, we may assume that the Morse index of the solution provided by Theorem 1.1 is $\leq m - 1$.

Perturbing, if necessary J, we may assume that all the critical points of J are
nondegenerate and have their Morse index \(\leq m - 1\). Such critical points do not change the homological group in dimension \(m\) of level sets of \(J\).

Since \(X_\infty\) defines a homological class in dimension \(m\) which is nontrivial in \(J_{c_1}\), but trivial in \(J_{c_2 + \varepsilon}\), our result follows.

\[\square\]

6 Proof of Theorems 1.2 and 1.3

First, we start by proving the following main results

Proposition 6.1 Let \(y_0\) be defined in \((H_1)\). Then \((y_0, y_0)_\infty\) is not a critical point at infinity for \(J\), that is, there exists a decreasing pseudogradient \(W\) for \(J\) satisfying Palais-Smale in the neighborhood of \((y_0, y_0)_\infty\).

Proof. For \(\varepsilon_0 > 0\) small enough, we set

\[C_{\varepsilon_0} = \{u = \alpha_1 \delta_{a_1, \lambda_1} + \alpha_2 \delta_{a_2, \lambda_2} \in V_\delta(2, \varepsilon_0)/a_1, a_2 \in \mathcal{V}(y_0) \cap \partial S^n_{\lambda_1}\}.\]

Our goal is to build a pseudogradient vector field \(W\) for \(J\) satisfying the Palais-Smale condition in \(C_{\varepsilon_0}\) such that for \(u \in C_{\varepsilon_0}\), we have

i. \((-\nabla J(u), W) \geq \gamma \left(\sum \frac{1}{\lambda_i^2} + \sum (1 - J(u)^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i)) + \frac{n-4}{4} \right),\]

ii. \((-\nabla J(u + \bar{v}), W + \frac{\partial \delta}{\partial (\alpha, a, \lambda)}(W)) \geq \frac{\gamma}{2} \left(\sum \frac{1}{\lambda_i^2} + \sum (1 - J(u)^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i)) + \frac{n-4}{4} \right),\]

iii. \(W\) is bounded

iv. \(\lambda_{\max} \leq 0.\)

where \(\gamma\) is a positive constant large enough.

We can assume, without loss of generality, that \(\lambda_1 \leq \lambda_2\). We devide \(C_{\varepsilon_0}\) in three principal regions.

1st region. \(M\lambda_1 \leq \lambda_2\) and \(\forall i |1 - J(u)^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i)| \leq \frac{2C'}{\lambda_1}\), where \(M\) and \(C'\) are positive constants large enough.

We set

\[W_1 = \lambda_1 \frac{\partial \delta}{\partial \lambda_1} - \lambda_2 \frac{\partial \delta}{\partial \lambda_2} \sqrt{M}.\]

From Proposition 3.2, we derive

\[\begin{align*}
- (\nabla J(u), W_1) &\geq c \left(\frac{1}{\lambda_1} + O(\varepsilon_{12}) \right) + \sqrt{M} \left[-\frac{c}{\lambda_2} + c \varepsilon_{12} \right] + O \left(\sum \frac{1}{\lambda_k^2} \right) \\
&\quad + O \left(\varepsilon_{12}^{\frac{n}{2}} \log(\varepsilon_{12}^{-1}) + \varepsilon_{12} (\log(\varepsilon_{12}^{-1}))^{\frac{n-2}{n}} \sum \frac{1}{\lambda_k} \right) \\
&\geq \frac{c}{2} \left(\frac{1}{\lambda_1} + \frac{M}{\lambda_2} \right) + \frac{c\sqrt{M}}{2} \varepsilon_{12} \\
&\geq \frac{c}{2} \left(\frac{1}{\lambda_1} + \frac{M}{\lambda_2} \right) + \frac{c\sqrt{M}}{2} \varepsilon_{12} \\
&\quad \sum (1 - J(u)^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i) + \varepsilon_{12}).
\end{align*}\]
2nd region. \(2M\lambda_1 \geq \lambda_2\) and, \(\forall i |1 - J(u)^{n-2}_i a_i^{\frac{4}{n-2}} K(a_i)| \leq \frac{2C}{\lambda_i}\). In this region, two cases may occur.

Case 2.1 \(\varepsilon_{12}^{\frac{n-4}{n-2}} \geq \frac{d_0}{\lambda_1}\), where \(d_0 = \max(d(y_0, a_1), d(y_0, a_2), d(a_1, a_2))\).

We set

\[
W_2 = \frac{1}{\lambda_1} \left[\alpha_1 \frac{\partial \tilde{\delta}_1}{\partial a_1} \left(\frac{a_2 - a_1}{d(a_2, a_1)} \right) - \alpha_2 \frac{\partial \tilde{\delta}_2}{\partial a_2} \left(\frac{a_2 - a_1}{d(a_2, a_1)} \right) \right].
\]

From Proposition 3.3 and the fact that \(\frac{\partial \varepsilon_{12}}{\partial a_2} = -\frac{\partial \varepsilon_{12}}{\partial a_1}\), we obtain

\[
-(\nabla J(u), W_2) = \frac{1}{\lambda_1} \left(\alpha_1 \alpha_2 c_2 J(u) \frac{\partial \varepsilon_{12}}{\partial a_1} \right) \left(-1 + J(u)^{n-2} \sum \alpha_k^{\frac{4}{n-2}} K(a_k) \right) 2 \left(\frac{a_2 - a_1}{d(a_2, a_1)} \right) + O \left(\sum \left(\frac{\nabla_T K(a_k)}{\lambda_k} + \frac{1}{\lambda_k^2} \right) \right) + O \left(\varepsilon_{12}^{\frac{n-4}{n-2}} \log (\varepsilon_{12}^{-1}) + \sum \frac{1}{\lambda_k} \varepsilon_{12} \left(\log (\varepsilon_{12}^{-1}) \right)^{\frac{n-2}{n}} + d(a_1, a_2) \varepsilon_{12}^{\frac{n+1}{2}} \sum \lambda_k \right).
\]

Observe that

\[
\varepsilon_{12} \sim (\lambda_1 \lambda_2 d(a_1, a_2)^2)^{\frac{2-n}{2}}.
\]

Indeed \(\lambda_1\) and \(\lambda_2\) are the same order, and

\[
\frac{\partial \varepsilon_{12}}{\partial a_1} = -(n-2)\lambda_1 \lambda_2 (a_1 - a_2) \varepsilon_{12}^{\frac{n-4}{n-2}}.
\]

Thus

\[
-(\nabla J(u), W_2) = \frac{4}{\lambda_1} \alpha_1 \alpha_2 c_2 (n-2) J(u) \lambda_1 \lambda_2 d(a_1, a_2) \varepsilon_{12}^{\frac{n-4}{n-2}} (1 + o(1)) + R
\]

\[
\geq \frac{c \varepsilon_{12}}{\lambda_1 d(a_1, a_2)} + R
\]

\[
\geq c \varepsilon_{12}^{\frac{n-4}{n-2}} + R
\]

(6.18)

where

\[
R = +O \left(\frac{d(a_1, y_0)}{\lambda_1} + \frac{d(a_2, y_0)}{\lambda_2} + \sum \frac{1}{\lambda_k^2} \right)
\]

\[
+ O \left(\varepsilon_{12}^{\frac{n}{n-2}} \log (\varepsilon_{12}^{-1}) + \sum \frac{1}{\lambda_k} \varepsilon_{12} \left(\log (\varepsilon_{12}^{-1}) \right)^{\frac{n-2}{n}} + d(a_1, a_2) \varepsilon_{12}^{\frac{n+1}{2}} \sum \lambda_k \right).
\]

We also observe that

\[
\frac{d_0}{\lambda_1} \leq \varepsilon_{12}^{\frac{n-4}{n-2}} = o \left(\varepsilon_{12}^{\frac{n-4}{n-2}} \right),
\]

(6.19)

\[
\frac{1}{\lambda_1 d(a_1, a_2)} \geq \left(\frac{1}{\lambda_1 \lambda_2 d(a_1, a_2)^2} \right)^{\frac{1}{2}} \sim \varepsilon_{12}^{\frac{1}{n-2}},
\]

(6.20)
\begin{equation}
\lambda_i d(a_1, a_2) \varepsilon_{12}^{(n+1)/(n-2)} = \varepsilon_{12}^{n/(n-2)} \left(\frac{\lambda_i}{\lambda_j} \right)^{1/2} = o(\varepsilon_{12}^{(n-1)/(n-2)}),
\end{equation}

\begin{align*}
\frac{\varepsilon_{12}}{\lambda_1} \left(\log(\varepsilon_{12}^{-1}) \right)^{(n-2)/n} &= \frac{\varepsilon_{12}}{\sqrt{\lambda_1 d_0}} \left(\log(\varepsilon_{12}^{-1}) \right)^{(n-2)/n} \\
&= O\left(\frac{d_0}{\lambda_1} + \frac{\varepsilon_{12}^2 (\log(\varepsilon_{12}^{-1}))^{2(n-2)/n}}{\lambda_1 d_0} \right) \\
&= o\left(\varepsilon_{12}^{(n-1)/(n-2)} \right) + o\left(\frac{\varepsilon_{12}}{\lambda_1 d_0} \right).
\end{align*}

In the same way, we have

\begin{equation}
\frac{\varepsilon_{12}}{\lambda_2} \left(\log(\varepsilon_{12}^{-1}) \right)^{(n-2)/n} = o\left(\varepsilon_{12}^{(n-1)/(n-2)} \right) + o\left(\frac{\varepsilon_{12}}{\lambda_2 d_0} \right)
\end{equation}

We also have, since $\lambda_1 |a_1 - a_2| \to +\infty$,

\begin{equation}
\lambda_1^{-2} = o\left(d_0 \lambda_1^{-1} \right) = o\left(\varepsilon_{12}^{(n-1)/(n-2)} \right).
\end{equation}

Similarly, we have

\begin{equation}
\lambda_2^{-2} = o\left(\varepsilon_{12}^{(n-1)/(n-2)} \right).
\end{equation}

Using (6.18), (6.19), (6.20), (6.21), (6.22), (6.23), (6.24) and (6.25), we find

\begin{align*}
-(\nabla J(u), W_2) &\geq C \left(\varepsilon_{12}^{(n-1)/(n-2)} + \frac{d_0}{\lambda_1} + \frac{d_0}{\lambda_2} \right) \\
&\quad \gamma \left(\varepsilon_{12}^{\frac{n-2}{2}} + \sum \frac{1}{\lambda_i^2} + \sum |1 - J(u) \frac{n-2}{\lambda_i^2} \alpha_i K(a_i)^2| \right)
\end{align*}

where γ is a large constant.

Case 2.2 $\varepsilon_{12}^{\frac{n-2}{2}} \leq 2 \frac{d_0}{\lambda_1}$

In this case, we set

\begin{equation}
W_3 = \frac{1}{\lambda_1} \left[\alpha_1 \frac{\partial \delta_1}{\partial a_1} \left(\frac{y_0 - a_1}{d_0} \right) + \alpha_2 \frac{\partial \delta_2}{\partial a_2} \left(\frac{y_0 - a_2}{d_0} \right) \right].
\end{equation}

Using Proposition 3.3, we obtain

\begin{align*}
-(\nabla J(u), W_3) &= J(u) 2c_2 \frac{\alpha_1 \alpha_2}{\lambda_1} \frac{\partial \varepsilon_{12}}{\partial a_1} \left(\frac{a_2 - a_1}{d_0} \right) (1 + o(1)) \\
&\quad + J(u) \frac{2^{(n-1)}}{\lambda_1} \sum \alpha_k^{\frac{2n}{n-2}} \nabla K(a_k) \left(\frac{y_0 - a_k}{d_0} \right) + R_1
\end{align*}
where
\[
R_1 = O \left(\frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2} + \varepsilon_1^{n-2} \log(\varepsilon_1^{-1}) \right)
\]
\[
+ O \left(\sum \frac{1}{\lambda_k} \varepsilon_1 \left(\log(\varepsilon_1^{-1}) \right)^{\frac{n-2}{n}} + d(a_1, a_2) \varepsilon_1^{\frac{n+1}{2}} \sum \lambda_k \right).
\]

Thus, we find
\[
-(\nabla J(u), W_3) \geq \frac{c}{\lambda_1} \lambda_2 \frac{d(a_1, a_2)^2}{d_0} \varepsilon_1^{n-2} + \frac{c}{\lambda_1 d_0} (d(a_1, y_0)^2 + d(a_2, y_0)^2) + R_1
\]
\[
\geq \frac{c}{\lambda_1 d_0} \varepsilon_1 + \frac{c}{\lambda_1} d_0 + R_1. \quad (6.26)
\]

Observe that
\[
\varepsilon_1^{n-2} \log(\varepsilon_1^{-1}) = o \left(\varepsilon_1^0 \right) = o (d_0 \lambda_1^{-1}) \quad (6.27)
\]
\[
\lambda_k^{-2} = o (d_0 \lambda_k^{-1}) \quad \text{for } k = 1, 2, \quad (6.28)
\]
\[
\varepsilon_1 \left(\log(\varepsilon_1^{-1}) \right)^{\frac{n-2}{n}} = O \left(\frac{d_0}{\lambda_1} + \frac{\varepsilon_1}{\lambda_1 d_0} \right) \quad (6.29)
\]
Using (6.26),(6.27),(6.28) and (6.29), we obtain
\[
-(\nabla J(u), W_3) \geq C \left(\frac{d_0}{\lambda_1} + \frac{d_0}{\lambda_2} + \frac{\varepsilon_1}{\lambda_1 d_0} \right)
\]
\[
\geq C \left(\frac{d_0}{\lambda_1} + \frac{d_0}{\lambda_2} + \varepsilon_1^{(n-\frac{1}{2})/(n-2)} \right)
\]
\[
\left(\sum \frac{1}{\lambda_i^2} + \sum (1 - J(u))^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i) \right) + C \varepsilon_1^{\frac{n-1}{2}}. \quad (3rd \text{ region.})
\]

3rd region. \(\exists i \in \{1, 2\} \) such that \(|1 - J(u))^{\frac{n-2}{2}} a_i^{\frac{4}{n-2}} K(a_i)| \geq C_{\lambda_i}^{-1} \).
In this case, we set
\[
Z = -\text{sign} \left(1 - J(u))^{\frac{n}{n-2}} a_i^{\frac{4}{n-2}} K(a_i) \right) \delta_i.
\]
Using Proposition 3.4, we obtain
\[-(\nabla J(u), Z) \geq C|1 - J(u)\frac{n-2}{n-2} a_i \frac{a_i - \lambda_i}{k} K(a_i)| + O\left(\frac{1}{\lambda_i}\right) + O(\varepsilon_{12})\]
\[\geq C \frac{2}{2} |1 - J(u)\frac{n-2}{n-2} a_i \frac{a_i - \lambda_i}{k} K(a_i)| + \frac{C'}{4\lambda_i} + O(\varepsilon_{12}).\]

We also set
\[Z_1 = \begin{cases} W_1 & \text{if } M\lambda_1 \leq \lambda_2 \\ -\lambda_2 \frac{\partial \delta_{x_i}}{\partial \lambda_2} & \text{if } 2M\lambda_1 \geq \lambda_2.\end{cases}\]

Setting \(W_4 = Z + Z_1 \sqrt{C'}\), we derive
\[-(\nabla J(u), W_4) \geq C \left(|1 - J(u)\frac{n-2}{n-2} a_i \frac{a_i - \lambda_i}{k} K(a_i)| + \frac{1}{\lambda_k} + \varepsilon_{12}\right)\]
\[\geq \gamma \left(\sum |1 - J(u)\frac{n-2}{n-2} a_i \frac{a_i - \lambda_i}{k} K(a_i)|^2 + \sum \frac{1}{\lambda_k^2} + \varepsilon_{12}^2\right).\]

Hence our global vector field will be built using a convex combination of \(W_1, W_2, W_3, W_4\) and will satisfy obviously i., iii. and iv. Next, we give the proof of ii. As in [3] and [8], it is easy to prove that
\[-\left(\nabla J(u + \bar{v}), \frac{\partial \bar{v}}{\partial (x_i, a_i, \lambda_i)}(W)\right) \leq c|\bar{v}||\nabla J(u + \bar{v})|\]
\[= O\left(\|\bar{v}\|^2 + |\nabla J(u + \bar{v})|^2\right).\]

By Propositions 3.2 and 3.3, we can prove that
\[|\nabla J(u + \bar{v})| = O\left(\sum |1 - J(u)\frac{n-2}{n-2} a_i \frac{a_i - \lambda_i}{k} K(a_i)| + \sum \frac{1}{\lambda_k} + \varepsilon_{12} + |\bar{v}|\right).

Using now the estimate of \(\bar{v}\), we easily derive ii. Thus our proposition follows. □

Next, we state the following result whose proof is similar to corresponding statements in Lemma A1.1 [3]

Lemma 6.1 (Lemma A1.1 [3]) Let \(u = \alpha_{i_0} \delta_{(x_i, a_i, \lambda_i)} + \alpha_{j_0} \delta_{(x_i, a_i, \lambda_j)}\), where
(i) \(\varepsilon_{i_0, j_0} \geq \delta_1, \delta_1 \text{ a given constant}\)
(ii) \(B^2 \geq \lambda_{i_0}, \lambda_{j_0} \geq B\)

If, given \(\delta_1, B\) is large enough, there is a pseudogradient vector field of \(J\), built with the Yamabe gradient on \(u\), which leads functions such as \(u\) in the neighborhood of functions of the type \(\alpha \delta_{(x, \lambda)} + v\), where \(y\) is close to \(\frac{1}{2}(x_{i_0} + x_{j_0})\) up to \(O(\frac{1}{B})\), \(\lambda \geq cB\) (c is a universal constant) and \(||v|| = o(1)||\).

Now, we will use the above Lemma in the proof of the next main result.

Proposition 6.2 Let \(\varepsilon_0 > 0\) small enough. There exists a vector field \(Z_0\) defined in
\[W_{\varepsilon_0} = \{\alpha_1 \bar{\delta}_{x, \lambda_1} + \alpha_2 \bar{\delta}_{x_0, \lambda_2}/\alpha_i \geq 0, \alpha_1 + \alpha_2 = 1, x \in X, \lambda_i > \varepsilon_0^{-1}, \varepsilon_1 < \varepsilon_0\} \]
which can be extended to
\[W(2, \varepsilon_0) = \{ \alpha_1 \bar{\delta}_{\alpha_1, \lambda_1} + \alpha_2 \bar{\delta}_{\alpha_2, \lambda_2} + v \in V_\delta(2, \varepsilon_0)/\alpha_1, \alpha_2 \in \overline{S^n_+} \} \]
so that the following holds:
\[f_\lambda(C_{y_0}(X)) \text{ retracts by deformation on } X \cup W_u(y_0, y_{i_0}) \cup D, \]
where \(D \subset \sigma \) is a stratified set (in the topological sense, that is, \(D \in \Sigma_k(S^n_+) \), the group of chains of dimensions \(k \)) and where \(\sigma = \bigcup_{y_i \in X \setminus \{ y_{i_0}, y_0 \}} W_u(y_0, y_i)_{\infty} \) is a manifold in dimension at most \(k - 1 \).
Here \(W_u \) denotes the unstable manifold for \(Z_0 \).

Proof. First, we notice that assumption \((H_2)\) implies that any critical point \(y \) of \(K_1 \) such that \(y \in X \) satisfies \((\partial K/\partial v) > 0 \). Now, we distinguish five cases

Case 1. There exists \(i \) such that \(\alpha_i \) is far away from \(J(u)_x \) and \(K(a_i)^{2/n} (i = 1, 2) \).

We set
\[Z_1 = \bar{\delta}_{\alpha_i, \lambda_i} \quad \text{with} \quad \bar{\alpha}_i = \begin{cases} 1 & \text{if } \alpha_i > J(u)_x K(a_i)^{2/n} + \eta \\ -1 & \text{if } \alpha_i < J(u)_x K(a_i)^{2/n} - \eta \end{cases} \]

where \(\eta \) is a positive constant.

Using Proposition 3.4, we obtain
\[-(\nabla J(u), Z_1) = c + O(\lambda_i^{-1}) + O(\varepsilon_{12}) \geq C > 0. \]

Case 2. For each \(i \in \{1, 2\} \), \(\alpha_i = J(u)_x K(a_i)^{2/n} \) and \(x \notin \mathcal{V}(y_i, \rho) \), where \(\rho < \frac{1}{2} \min_{i \neq j} d(y_i, y_j) \) and \(y_i \) is any critical point of \(K_1 = K/\partial S^n_+ \).

In this case, we have \(d(x, y_0) \geq c \), thus \(\varepsilon_{12} = o\left(\frac{1}{\lambda_i}\right) \) for \(i = 1, 2 \).

Two subcases may occur
If \(\lambda_1 \leq C_1 \lambda_2 \), where \(C_1 \) is a large enough positive constant, we set
\[Z_{21} = \frac{1}{\lambda_1} \frac{\partial \bar{\delta}_1}{\partial \lambda_1} \nabla \tau K. \]

If \(\lambda_1 \geq C_1 \lambda_2 \), we set
\[Z_{22} = Z_{21} + \lambda_2 \frac{\partial \bar{\delta}_2}{\partial \lambda_2}. \]

Using Propositions 3.2 and 3.3, we derive
\[-(\nabla J(u), Z_{2i}) \geq c\lambda_1^{-1} + c\lambda_2^{-1} + \varepsilon_{12} \quad \text{for } i = 1, 2. \]

Case 3. For each \(i \in \{1, 2\} \), \(\alpha_i = J(u)_x K(a_i)^{2/n} \) and \(x \in \mathcal{V}(y_i, 2\rho) \), where \(y_i \) is any critical point of \(K_1 \) such that \(y_i \neq y_0 \).

Since \(x \in X \), \(y_i \in X \) and therefore \((\partial K/\partial v)(y_i) > 0 \). Now, we set
\[Z_3 = \lambda_1 \frac{\partial \bar{\delta}_1}{\partial \lambda_1} + \lambda_2 \frac{\partial \bar{\delta}_2}{\partial \lambda_2}. \]
Using Proposition 3.2, we obtain
\[-(\nabla J(u), Z_3) \geq c\lambda_1^{-1} + c\lambda_2^{-1} + \varepsilon_{12}.
\]

Case 4. For each \(i \in \{1, 2\}\), \(\alpha_i = J(u)^{\frac{1}{n}} K(\alpha_i)^{\frac{1}{2}}\) and \(x \in \mathcal{V}(y_0, 2\rho)\)
In this case, we use the vector field defined in the proof of Proposition 6.1 which we combine with the vector field defined in Lemma 6.1.

Case 5. \(\alpha_1 = 0\) or \(\alpha_2 = 0\).
In this case, we only have one mass and we use the vector field defined in Lemma 4.1.

Our global vector field \(Z_0\) will be built using a convex combination of vector fields defined in cases 1-5.

Now, let \(u = \alpha \delta_{x,\lambda} + (1 - \alpha)\delta_{y_0,\lambda} \in f_\lambda(C_{y_0}(X))\).

The action of the flow of the pseudogradient \(Z_0\) is described as follows.

If \(\alpha < 1/2\), the flow of \(Z_0\) brings \(\alpha\) to zero, and thus in this case \(u\) goes to \(W_\alpha((y_0)_{\infty}) = \{y_0\}\).

If \(\alpha > 1/2\), the flow of \(Z_0\) brings \(\alpha\) to 1, and thus \(u\) goes, in this case, to \(W_\alpha((y_{i_0})_{\infty}) = X\).

If \(\alpha = (1 - \alpha) = 1/2\), we have an action on \(x \in X = \overline{W_s(y_{i_0})}\). In this case, \(u\) goes to \(W_s(y_i)\), where \(y_i\) is a critical point of \(K_1\) dominated by \(y_{i_0}\) and two cases may occur:

- In the first case \(y_i \neq y_0\), then \(x\) goes to \(W_u(y_0, y_{i_\infty})\).
- In the second case \(y_i = y_0\), \(u\) goes to \(W_u(y_0)_{\infty}\) by the vector field defined in Lemma 6.1.

Then our result follows. \(\square\)

We now prove our theorems.

Proof of Theorem 1.2 We argue by contradiction. Assume that (1) has no solution. The strong retract defined in Proposition 6.2 does not intersect \(W_u(y_0, y_{i_0})_{\infty}\) and thus it is contained in \(X \cup D\) (see Proposition 6.2). Therefore \(H_\ast(X \cup D) = 0\), for all \(* \in \mathbb{N}^*, \) since \(f_\lambda(C_{y_0}(X))\) is a contractible set.

Using the exact homology sequence of \((X \cup D, X)\), we have
\[...
\rightarrow H_{k+1}(X \cup D) \rightarrow \pi \rightarrow H_{k+1}(X \cup D, D) \rightarrow^\beta H_k(X) \rightarrow^i H_k(X \cup D) \rightarrow ...
\]

Since \(H_\ast(X \cup D) = 0\), for all \(* \in \mathbb{N}^*, \) then \(H_k(X) = H_{k+1}(X \cup D, X)\).

In addition, \((X \cup D, X)\) is a stratified set of dimension at most \(k\), then \(H_{k+1}(X \cup D, X) = 0\), and therefore \(H_k(X) = 0\). This yields a contradiction since \(X\) is a manifold in dimension \(k\) without boundary. Then our theorem follows. \(\square\)

Proof of Theorem 1.3 Assume that (1) has no solution. By the above arguments, \(X \cup (\cup_{y_i \in B_k} W_u(y_0, y_{i})) \cup D\) is a strong retract of \(f_\lambda(C_{y_0}(X))\), where \(D \subset \sigma\) is a stratified set and where \(\sigma = \cup_{y_i \in X \setminus (B_k \cup \{y_0\})} W_u(y_0, y_{i})_{\infty}\) is a manifold in dimension at most \(k\).

Since \(\mu(y_0) = 0\) for each \(y_i \in B_k\), \(f_\lambda(C_{y_0}(X))\) retracts by deformation on \(X \cup D\), and therefore \(H_\ast(X \cup D) = 0\), for all \(* \in \mathbb{N}^*. \) Using the exact homology sequence
of \((X \cup D, D)\), we obtain \(H_{k+1}(X \cup D, X) = H_k(X) = 0\), a contradiction, and therefore our result follows.

References

