Smooth approximation of twisted Kähler-Einstein metrics

Abstract: In this article, we prove the existence of smooth approximations of twisted Kähler-Einstein metrics using the variational method.

Keywords: twisted Kähler-Einstein metrics, complex Monge-Ampère equation

MSC 2020: 32Q20, 32Q26, 32W20

1 Introduction

Let \((M, \omega_0)\) be a compact Kähler manifold and \(T\) be a closed positive current. Assume that \(c_1(M, T) = 2\pi c(M) - [T]\) is a positive class and \(\omega \in c_1(M, T)\). We say that \(\omega\) is a twisted Kähler-Einstein metric if

\[
\text{Ric} \omega = \omega + T
\]

holds as currents. Twisted Kähler-Einstein metric can be considered as a generalization of Kähler-Einstein metric. The twisted term can be a current in general. If the current is the Dirac measure along a smooth divisor, the metric is the conic Kähler-Einstein metric. The existence of twisted Kähler-Einstein metric is proved in [3,8,16]. The metric \(\omega\) is obtained using the variational method, so there is little information of the metric geometry of \(\omega\). As a first step, we want to study the smooth approximation of metric \(\omega\) as shown in [13,14].

We always assume that \(T\) is a closed positive current with klt singularities. By choosing a smooth \((1,1)\)-form \(\theta\) in the same cohomological class of \(T\), we obtain

\[
T = \theta + \sqrt{-1} \partial \bar{\partial} \psi,
\]

where \(\psi\) is a quasi-psh function such that \(e^{-\psi} \in L^p(M, \omega_0)\) for some \(p > 1\). Then the following holds.

Theorem 1.1. Let \(\omega_0\) be a smooth Kähler metric and \(\omega = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi\) be a twisted Kähler-Einstein metric such that \(\varphi\) is bounded. If \(T\) is smooth on an open set \(U\), then \(\varphi\) is smooth on \(U\). Moreover, if \(T\) has analytic singularity and \(\text{Aut}^0(X, T) = 0\), there exists a sequence of smooth metric \(\omega_t\) with Ricci curvature bounded from below such that \(\omega_t\) converges to \(\omega\) smoothly outside the singularity of \(T\).

The smoothness of \(\omega\) on the regular part of \(T\) is proved in Proposition 2.1. This result is essentially proved in [11] (see also Appendix B in [1]). The existence of smooth approximation is proved in Proposition 3.1 using the perturbation method in [14].
2 Regularity of twisted Kähler-Einstein metric

In this section, we prove the smoothness of φ in the region where T is smooth.

Proposition 2.1. Let (M, ω_0) be a compact Kähler manifold and T be a closed positive current, $c(T, M) = [\omega_0]$. Assume that there exists a twisted Kähler-Einstein metric $\omega_\varphi = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi$ with bounded potential. If for the neighborhood U of $x \in M$, $T|_U$ is smooth, then ω_φ is smooth on U.

Since ω_φ is a twisted Kähler-Einstein metric, it satisfies

$$ \text{Ric}(\omega_\varphi) = \omega_\varphi + T. $$

For $c(T, M) = [\omega_0]$, there is a smooth function h such that

$$ \omega_0 = \text{Ric}(\omega_0) + \sqrt{-1} \partial \bar{\partial} h - \theta. $$

So we obtain

$$ \text{Ric}(\omega_\varphi) = \text{Ric}(\omega_0) + \sqrt{-1} \partial \bar{\partial}(h + \varphi + \psi), $$

which is equivalent to

$$ (\omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi)^n = e^{h - \varphi - \psi} \omega_0^n $$

by adding a constant to φ. We only need to prove that φ is smooth in the region where ψ is smooth. First, we give the C^0-estimate. Since $e^{-\varphi} \in L^p$ and φ is bounded, we obtain $f = e^{-h - \varphi - \psi} \in L^p$, so C^0-estimate is obtained by Corollary 6.9 in [9].

Next we show the C^2-estimate. By Theorem 9.1 in [6], we know the following:

Theorem 2.2. Let Φ be a quasi-psh function on compact Kähler manifold (M, ω_0) such that for a smooth $(1,1)$ form θ

$$ \sqrt{-1} \partial \bar{\partial} \Phi \geq \theta. $$

Then there exists a decreasing sequence $\Phi_\varepsilon \in C^\infty(M)$ having the following properties:

(i) There exists a constant C such that

$$ \sqrt{-1} \partial \bar{\partial} \Phi_\varepsilon \geq \theta - C \omega_0. $$

(ii) $\lim_{\varepsilon \to 0} \Phi_\varepsilon(x) = \Phi(x)$ for all $x \in M$.

So we have the decreasing sequences of smooth quasi-psh functions $\{\Phi_\varepsilon\}, \{\psi_\varepsilon\}$ converging to φ, ψ, respectively. Since φ is continuous, $[\Phi_\varepsilon]$ converge to φ in C^0-topology. And since

$$ |e^{-\psi} - e^{-\psi_\varepsilon}| \leq e^{-\psi}, \quad e^{-\varphi} \in L^p, $$

$e^{-\Phi_\varepsilon}$ converges to $e^{-\varphi}$ in L^p norm by dominated convergence theorem. By the result of Yau [15], the equation

$$ (\omega_0 + \sqrt{-1} \partial \bar{\partial} \Phi_\varepsilon)^n = e^{h - \varphi - \psi_\varepsilon} \omega_0^n $$

has smooth solution φ_ε.

Proposition 2.3. Assume φ_ε satisfies

$$ (\omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_\varepsilon)^n = e^{h - \varphi_\varepsilon - \psi_\varepsilon} \omega_0^n, $$

then $\Delta \varphi_\varepsilon = O(e^{-\psi_\varepsilon})$.

Proof. Write (Δ, tr) and $(\Delta_{\omega_\varepsilon}, \text{tr}_{\omega_\varepsilon})$ as the Laplace operator and trace with respect to $\omega_0, \omega_\varepsilon$, and
\[\omega_k = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_k. \]

We only need to prove

\[\text{tr}(\omega_k) \leq A e^{-\psi}. \]

Recall the Laplace inequality for the second-order estimate in [12].

Lemma 2.4. If \(\tau \) and \(\tau' \) are two Kähler forms on a complex manifold, then there exists a constant \(B > 0 \) only depending on a lower bound for the holomorphic bisectional curvature of \(\tau \) such that

\[\Delta_k \log \text{tr}(\tau') \geq - \frac{\text{tr Ric}(\tau')}{\text{tr}(\tau')} - B \text{tr} \tau. \]

It follows that

\[\Delta_{\omega_k} \log \text{tr}(\omega_k) \geq - \frac{\text{tr Ric}(\omega_k)}{\text{tr}(\omega_k)} - B \text{tr} \omega_k. \]

On the other hand, by applying \(\sqrt{-1} \partial \bar{\partial} \log \) to (4), we obtain

\[- \text{Ric}(\omega_k) = - \text{Ric}(\omega_0) - \sqrt{-1} \partial \bar{\partial} (h + \bar{\varphi}_k + \varphi_k) \geq - A \omega_0 - \sqrt{-1} \partial \bar{\partial} (\bar{\varphi}_k + \varphi_k), \]

then

\[\Delta_{\omega_k} \log \text{tr}(\omega_k) \geq - \frac{A n + \Delta(\bar{\varphi}_k + \varphi_k)}{\text{tr}(\omega_k)} - B \text{tr} \omega_k. \quad (5) \]

Since \(\psi_k, \bar{\varphi}_k \) are quasi-psh functions, we have

\[0 \leq A \omega_0 + \sqrt{-1} \partial \bar{\partial} (\psi_k + \bar{\varphi}_k) \leq \text{tr} \omega_k(A \omega_0 + \sqrt{-1} \partial \bar{\partial} (\psi_k + \bar{\varphi}_k)) \omega_k \]

\[\Rightarrow An + \Delta(\psi_k + \bar{\varphi}_k) \leq \left(A \text{tr} \omega_k + \Delta_k(\psi_k + \bar{\varphi}_k) \right) \text{tr} \omega_k \]

\[\Rightarrow \Delta_{\omega_k}(\psi_k + \bar{\varphi}_k) \geq \frac{An + \Delta(\psi_k + \bar{\varphi}_k)}{\text{tr} \omega_k} - A \text{tr} \omega_k. \quad (6) \]

Actually, constants \(A \) for two inequalities can be chosen as the same. Combining (5) and (6), we obtain

\[\Delta_{\omega_k}(\log \text{tr}(\omega_k) + \psi_k + \bar{\varphi}_k) \geq - A \text{tr} \omega_0. \]

We have \(\omega_k = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_k \), hence,

\[n = \text{tr} \omega_0 - \Delta_k \varphi_k. \]

We deduce from (7) that

\[\Delta_{\omega_k}(\log \text{tr}(\omega_k) + \psi_k + \bar{\varphi}_k - A_1 \varphi_k) \geq \text{tr} \omega_0 - A_2. \]

(8) on \(M \), with constants \(A_1 \) and \(A_2 \). Set

\[H = \log \text{tr}(\omega_k) + \psi_k + \bar{\varphi}_k - A_1 \varphi_k. \]

Since \(\omega_k \) is smooth on \(X \), \(H \) achieves its maximum at some \(x_0 \) belongs to smooth part, and (8) yields

\[\text{tr} \omega_k(\omega_0(x_0)) \leq A_2. \]

On the other hand, a trivial inequality shows that

\[\text{tr}(\tau') \leq \left(\frac{\tau'}{\tau} \right)^n \text{tr}(\tau)^{n-1} \]

for any two Kähler forms \(\tau, \tau' \). Hence,
\[
\log\text{tr}(\omega_\varepsilon) \leq \log\left(e^{h \psi_\varepsilon - \tilde{\psi}}\right) + (n - 1) \log\text{tr}_{\omega_0}(\omega_0) \leq A_1 + A_4\left(\log\text{tr}_{\omega_0}(\omega_0)\right) - (\psi_\varepsilon + \tilde{\phi}_\varepsilon),
\]
then
\[
H \leq \sup_M H = H(x_0) \leq A_1 + A_4\left(\log\text{tr}_{\omega_0}(\omega_0)\right) - A_1 \varphi_\varepsilon \leq A_0
\]
on \(M\), which means that
\[
\log\text{tr}(\omega_\varepsilon) + \psi_\varepsilon + \tilde{\phi}_\varepsilon - A_1 \varphi_\varepsilon \leq A_0.
\]
For \(\varphi\) is bounded and \(\tilde{\phi}_\varepsilon\) converges in \(C^0\)-topology, we infer
\[
\text{tr}(\omega_\varepsilon) \leq A e^{-\psi_\varepsilon}. \quad \Box
\]
Since we have \(e^{h \psi_\varepsilon - \tilde{\psi}} \rightarrow e^{h \psi - \psi}\) in \(L^p\), it follows that \(\varphi_\varepsilon\) converges as \(\varepsilon \rightarrow 0\) to the solution \(\varphi\) of
\[
(\omega_0 + \sqrt{-1} \delta \delta \psi_\varepsilon)^n = \lambda e^{-h \psi - \varphi} \omega_0^n.
\]
So we know that \(\varphi\) satisfies as well \(|\varphi|_{C^{1,1}} \leq A e^{-\psi}\). Thus, for any neighborhood \(U\) with \(\psi\) is smooth, we have
\[
|\varphi|_{C^{2,0}} \leq C.
\]
By the Evans-Krylov theory, there is some \(a \in (0, 1)\) such that
\[
|\varphi|_{C^{2,0}} \leq C'.
\]
By applying \(\partial_t\) to equation (3), we obtain
\[
a_t \partial_t \varphi + (\partial_t \varphi) = f,
\]
where \(f = -\partial_t(h + \psi)\) is smooth on \(U\). Through Schauder interior estimate and bootstrap argument, we obtain the regularity of \(\varphi\) on \(U\). Proposition 2.1 is proved.

3 Approximate metrics with uniform Ricci lower bound

In this section, we prove the second part of Theorem 1.1 when \(\psi\) has analytic singularity, i.e., \(\psi\) is equal to \(u + \sum_{i=1}^m |f_i|^2\) locally, where \(u\) is a smooth function and \(f_i(1 \leq i \leq m)\) are some analytic functions. It is easy to see that \((e^\psi + \delta)^{-1}\) is a smooth function for any real number \(\delta > 0\) or positive smooth function \(\delta\). So we can perturb equation (3) by
\[
(\omega_0 + \sqrt{-1} \delta \delta \varphi_\varepsilon)^n = \lambda e^{-h \psi}(e^\psi + \delta e^{-K\varphi})^{-1} \omega_0^n. \tag{9}
\]
We will use the variational method to solve (9) as shown in [14].

Proposition 3.1. Assume \(\text{Aut}^q(M, T) = 1\), and \(\theta + K \omega_0 \geq 0\). Then there are constants \(a, b, \delta_0 > 0\) depending on \((M, \omega_0, \psi)\), such that for \(\delta < \delta_0\) (9) has a smooth solution \(\omega_\delta\) with some \(\lambda \in [a, b]\), which converges to \(\omega_\varphi\) for \(\delta\) approaching 0 outside the singularity of \(\psi\). Moreover, the Ricci curvature of \(\omega_\delta\) is greater than \(1 - K\) uniformly.

As shown in [4], define
\[
\text{PSH}_{\text{full}}(M, \omega_0) = \{\varphi \in \text{PSH}(M, \omega_0) | \lim_{j \rightarrow \infty} \int_{\varphi \leq -j} (\omega_0 + \sqrt{-1} \delta \delta \max\{|\varphi|, -j\})^n = 0\},
\]
and the Monge-Ampère energy on \(\text{PSH}_{\text{full}}(M, \omega_0)\):
\[E(\varphi) = \frac{1}{(n+1)V} \sum_{i=0}^{n} \int_M \varphi \omega_0^i \wedge \omega_{\varphi}^{n-i}. \]

Set

\[\mathcal{E}(M, \omega_0) = \{ \varphi \in \text{PSH}_{\text{full}}(M, \omega_0) | E(\varphi) > -\infty \} \]

and

\[\mathcal{E}_c(M, \omega_0) = \{ \varphi \in \mathcal{E}(M, \omega_0), \sup_{M} \varphi \leq C \quad \text{and} \quad E(\varphi) \geq -C \}, \]

which is weakly compact for each \(C > 0 \).

Then, we define

\[Q = \{ \varphi \in \mathcal{E}(M, \omega_0) | \int_M h_\delta(e^{-\varphi}) \omega^n_0 = \int_M h_\delta(1) \omega^n_0 \}, \]

where

\[h_\delta(x) = \int_0^x e^{-h(e^\psi + \delta t^k)} dt. \]

By Lemma 6.4 of [2], we obtain

Lemma 3.2. The map

\[\mathcal{E}(M, \omega_0) \rightarrow L^1(M, \omega_0) : \varphi \rightarrow e^{-\varphi} \]

is continuous. Thus, \(Q \) is a closed subset of \(\mathcal{E}(M, \omega_0) \).

We have the following two functionals on \(\mathcal{H} \):

\[J(\varphi) = \frac{1}{V} \int_M \varphi \omega_0^n - E(\varphi), \]

\[F_\delta(\varphi) = -E(\varphi) - \log \left(\int_M h_\delta(e^{-\varphi}) \omega^n_0 \right). \]

It is easy to see that

\[F_\delta(\varphi) = -E(\varphi) + F_\delta(0), \quad F_\delta(0) = -\log \int_M h_\delta(1) \omega^n_0. \]

For \(\delta < 1 \), \(F_\delta(0) \) is uniformly bounded by a constant depending on \((M, \omega_0, \psi, h) \).

Lemma 3.3. \(J(\varphi) \) is lower semi-continuous on \(Q \).

Proof. Actually, by Proposition 2.10 in [4], we know that \(J(\varphi) \) is lsc on \(\mathcal{E}(M, \omega_0) \). Since \(\mathcal{H} \) is closed subset of \(\mathcal{E}(M, \omega_0) \), the lemma is proved. \(\square \)

Now we prove the proposition. Since \(\text{Aut}^0(M, T) = 1 \), by Theorem 2.18 in [3], we know that Ding functional

\[F_\delta(\varphi) = -E(\varphi) - \log \left(\int_M e^{-h_{-\varphi} - \psi} \omega^n_0 \right) \]
is coercive, i.e., there are some positive constants A and B, such that

$$F_0(\varphi) \geq AJ(\varphi) - B.$$

Clearly, $F_0 \geq F_0$, so F_0 is also coercive. Choose a minimizing sequence $\{\varphi_j\}$ of F_0 satisfying:

$$\lim_{j \to \infty} F_0(\varphi_j) = \inf_{\varphi \in \Omega} F_0(\varphi).$$

For j large sufficiently, we have

$$J(\varphi_j) \leq \frac{1}{A}(F_0(\varphi_j) + B) \leq \frac{1}{A}(F_0(0) + B) + 1. \quad (10)$$

Hence,

$$\frac{1}{V} \int_M \varphi_j \omega_0^S \leq |J(\varphi_j)| + |F_0(\varphi_j)| + |F_0(0)| \leq C(A, B, F_0(0)). \quad (11)$$

So we obtain

$$|\sup(\varphi_j)| \leq C(A, B, F_0(0)). \quad (12)$$

From (10) and (12), we know that φ_j lies in a weakly compact subset $E^1(M, \omega_0)$ of $E^1(M, \omega_0)$. Hence, by taking a subsequence of $\{\varphi_j\}$, we can assume that φ_j converge to a limit φ_0 in $E^1(M, \omega_0)$. From Lemma 3.3, we know that the functional $-E(\varphi)$ is lower semi-continuous. Thus, F_0 is lower semi-continuous. It follows that φ_0 is a minimizer of F_0. As the proof of Theorem 4.1 in [2], we can show that φ_0 is a solution of (9) for some λ.

Then, we give the estimate of λ. By (11), we know that

$$\int_M |\varphi_j| \omega_0^S \leq C(A, B, F_0(0), V).$$

Hence,

$$|\{e^{-\varphi} \geq C_1\}| = |\{\varphi \leq -\ln C_1\}| \leq \frac{\int_M |\varphi_j| \omega_0^S}{\ln C_1} \leq \frac{C(A, B, F_0(0), V)}{\ln C_1}.$$

So we can choose $C_1 > 0$, such that

$$|\{e^{-\varphi} \geq C_1\}| \leq \frac{V}{4}.$$

And we also can choose $\epsilon > 0$, such that

$$|\{e^\varphi \leq \epsilon\}| \leq \frac{V}{4}.$$

Set

$$N = \{e^{-\varphi} \leq C_1\} \cap \{e^\varphi \geq \epsilon\},$$

then

$$|N| \geq \frac{V}{2}.$$

On N, there is a $\delta(M, \omega_0, \psi)$ such that for any $\delta \leq \delta_0$, we have

$$1 \leq e^{-\varphi} \leq C_1$$

and

$$(e^\varphi + \delta e^{-\psi})^{-1} \geq \frac{1}{2} e^{-\varphi}.$$
So we obtain
\[
\int_N e^{-h} \phi \left(e^\phi + \delta e^{-K\phi} \right)^{-1} \omega^n_0 \geq C(M, \omega_0, \psi, h).
\]
Combining with perturbed equation, we obtain
\[
\lambda \leq \frac{V}{C(M, \omega_0, \psi, h)}.
\]
On the other hand, we have
\[
e^{-h} \phi \left(e^\phi + \delta e^{-K\phi} \right)^{-1} \leq h_\delta \left(e^{-\phi} \right).
\]
Hence,
\[
\int_M e^{-h} \phi \left(e^\phi + \delta e^{-K\phi} \right)^{-1} \omega^n_0 \leq \int_M h_\delta \left(e^{-\phi} \right) \omega^n_0 = \int_M h_\delta(1) \omega^n_0.
\]
So we obtain
\[
\lambda \geq \frac{V}{\int_M h_\delta(1) \omega^n_0}.
\]
Next, we establish the regularity of \(\phi_\delta \).

Lemma 3.4. For some \(\alpha \in (0, 1) \), \(|\phi_\delta|_{C^\alpha(M, \omega_0)} \leq C \), where \(C \) depends on \((M, \omega_0, \psi) \).

Proof. From above, we know that \(\phi_\delta \in \mathcal{E}^1_C(M, \omega_0) \subset \text{PSh}_{\text{full}} \), where \(\mathcal{E}^1_C(M, \omega_0) \) is a weak compact subset. By Proposition 1.4 of [1], there is \(q > 1 \) and \(|e^{-\phi}|_{L^q} \) is uniformly bounded by constant \(C(q) \). Indeed, the map
\[
\mathcal{E}^1 \to L^q(M, \omega_0) : \phi_\delta \to e^{-\phi_\delta}
\]
is continuous. Since \(e^{-\phi} \in L^p \), so
\[
\left(\left(e^\phi + \delta e^{-K\phi} \right)^{-1} \right)_{L^p} \leq |e^{-\phi}|_{L^q} \leq C(M, \omega_0, \psi, p).
\]
Then for any \(p_0 \in (1, p) \) and some constant independent of \(\delta \) satisfies
\[
|e^{-\phi_\delta} \cdot e^{-h} \cdot \left(e^\phi + \delta e^{-K\phi} \right)^{-1}|_{L^{p_0}} \leq C.
\]
By Theorem 2.1 of [10], we have
\[
|\phi_\delta|_{C^\alpha(M, \omega_0)} \leq C.
\]

Proposition 3.5. There exists \(\delta_1 \to 0 \) such that \(\phi_\delta \) converges to \(\phi + c \) in the \(C^0 \)-topology for some constant \(c \).

Proof. By Lemma 3.4, we can choose a subsequence \(\phi_{\delta_i} \), which converges to a continuous function \(\phi_0 \). Moreover, some \(\Lambda \) for \(\phi_0 \) satisfy
\[
(\omega_0 + \sqrt{-1} \delta \phi_{\delta_i} \omega^n_0 = \lambda e^{-h} \phi_{\delta_i} \omega^n_0).
\]
Then, through the unique result of Proposition 8.2 of [5], we know that \(\phi_0 = \phi + c \).
Proposition 3.6. Let \(\varphi \) be a solution of
\[
\omega^n = e^{\psi^- - \psi^+} \omega_0^n,
\]
where \(\omega_0 = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi \) and \(\psi^\pm \) are smooth functions.

Further, we assume that there exists \(C > 0 \) such that:
(i) \(|\varphi| \leq C \);
(ii) \(|\psi^+| \leq C \) and \(\sqrt{-1} \partial \bar{\partial} \psi^+ \geq -C\omega_0 \);
(iii) \(\text{Ric}(\omega_0) \) is bounded from below by \(-C\).

Then there exists a constant \(A > 0 \) depending only on \(C \), such that
\[
\frac{1}{A} \omega_0 \leq \omega_0 \leq A\omega_0.
\]

Choose a sequence of smooth \(\omega_0 - \text{psh} \) functions \(\tilde{\varphi}_j \), which converges to \(\varphi_\delta \) in \(C^0 \) norm.

Lemma 3.7. If \(\varphi_j \) is any solution of
\[
(\omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_j)^n = \Lambda e^{(K-1)\tilde{\psi}_j - h} (e^{\psi^+ - \psi^-} + \delta)^{-1} \omega_0^n,
\]
then for some \(C = C(M, \delta, |\varphi_\delta|_{C^0}) \),
\[
|\Delta \varphi_j| \leq C.
\]

Proof. First, we observe that for any smooth \(f > 0 \),
\[
\sqrt{-1} \partial \bar{\partial} \log (f + \delta) \geq \frac{f}{(f + \delta)} \sqrt{-1} \partial \bar{\partial} \log f.
\]
Let
\[
u_j = \log \left(e^{\psi^+ - \psi^-} + \delta \right).
\]
Then,
\[
\sqrt{-1} \partial \bar{\partial} \nu_j \geq \frac{e^{\psi^+ - \psi^-}}{e^{\psi^+ - \psi^-} + \delta} \sqrt{-1} \partial \bar{\partial} (\psi^+ - \psi^-) \geq - \frac{e^{\psi^+ - \psi^-}}{e^{\psi^+ - \psi^-} + \delta} (\theta + K\omega_0) \geq -(\theta + K\omega_0).
\]
Since \(\theta \) is smooth, then
\[
\sqrt{-1} \partial \bar{\partial} \nu_j \geq -C\omega_0.
\]
Moreover we know \(\omega_0 - \text{psh} \) function \(\tilde{\varphi}_j \) satisfies
\[
\sqrt{-1} \partial \bar{\partial} (K\tilde{\varphi}_j) \geq -K\omega_0.
\]
The right-hand side of (13) can be written as \(e^{\psi_j^- - \psi_j^+} \), where
\[
\psi_j^+ = K\tilde{\varphi}_j; \quad \psi_j^- = \nu_j + \tilde{\varphi}_j + h.
\]
As mentioned earlier, for some constant \(C > 0 \), we have
\[
\sqrt{-1} \partial \bar{\partial} \psi_j^+ \geq -C\omega_0.
\]
Hence, by Proposition 3.6, we have |\(\Delta \varphi_j | \| \leq C_\delta. \]

It follows from the uniqueness theorem for complex Monge-Ampère equations that \(\varphi_j \) converges to \(\varphi_\delta + c \) for some constant \(c \), so we have
\[
|\varphi_j|_{C^1(M, \omega_0)} \leq C_\delta.
\]
By Evans-Krylov theory, we know that for some $a \in (0, 1)$,
\[|\varphi_\delta|_{L^a(M, \omega_0)} \leq C_\delta, \]
where C_δ depends on δ. And higher order estimates are obtained by bootstrap. So φ_δ is a smooth function.

Now we can calculate the Ricci curvature.

Proposition 3.8. Assume ω_δ is smooth metric that satisfies (9), then
\[\text{Ric}(\omega_\delta) \geq (1 - K)\omega_\delta. \]

Proof. Write (9) as follows:
\[(\omega_\delta + \sqrt{-1}\partial\bar{\partial}\varphi_\delta)^n = \lambda e^{e^{(K-1)\varphi_\delta - \delta}(e^{(\theta + K\varphi_\delta \delta}) - 1)\omega_\delta^n}. \]

Then the $\text{Ric}(\omega_\delta)$ is equal to
\[\sqrt{-1}((-1)(\bar{\partial}\partial\varphi_\delta + \bar{\partial}h + \partial\bar{\partial}\log(e^{\partial\bar{\partial}\varphi_\delta} + \delta)) + \text{Ric}(\omega_0)) \]
\[\geq (1 - K)\sqrt{-1}\partial\bar{\partial}\varphi_\delta + \frac{e^{\partial\bar{\partial}\varphi_\delta}}{e^{\partial\bar{\partial}\varphi_\delta} + \delta} \sqrt{-1}\partial\bar{\partial}(\psi + K\varphi_\delta) + \omega_0 + \theta \]
\[\geq \omega_\delta - \frac{\delta K}{e^{\partial\bar{\partial}\varphi_\delta} + \delta} \sqrt{-1}\partial\bar{\partial}\varphi_\delta + \frac{\delta}{e^{\partial\bar{\partial}\varphi_\delta} + \delta} \theta \]
\[= \omega_\delta - \frac{\delta K}{e^{\partial\bar{\partial}\varphi_\delta} + \delta} \omega_\delta + \frac{\delta(K\omega_\delta + \theta)}{e^{\partial\bar{\partial}\varphi_\delta} + \delta} \]
\[\geq (1 - K)\omega_\delta. \]

Lemma 3.9. There exists $C = C(M, \omega_0, |\varphi_\delta|_{C^2}, |h|_{C^2})$ such that
\[\frac{1}{C} \omega_0 \leq \omega_\delta \leq C \cdot e^{-\Psi} \omega_0. \]

Proof. Since the Ricci curvature of ω_δ is bounded below by $(1 - K)\omega_\delta$, by the Chern-Lu inequality, we have
\[\Delta_\omega \log(\text{tr}_{\omega_\delta} \omega_0) \geq (K - 1) - B \text{tr}_{\omega_\delta} \omega_0, \]
where B is the upper bounded of the bisectional curvature of ω_0. Then we have
\[\Delta_\omega \left(\log(\text{tr}_{\omega_\delta} \omega_0 - (B + 1)\varphi_\delta) \right) \geq \text{tr}_{\omega_\delta} \omega_0 - n(B - 1) + (K - 1). \]

So by the maximum principle, we obtain
\[\text{tr}_{\omega_\delta} \omega_0 \leq n(B - 1) - (K - 1) \leq C. \]

Moreover, combined with (9)
\[\text{tr}_{\omega_\delta} \omega_\delta \leq \text{tr}_{\omega_\delta} \omega_0 \cdot \frac{\omega_\delta^2}{\omega_0^2} \leq C \cdot e^{-\Psi}. \]

Then, we obtain both the upper and lower bound of ω_δ. \hfill \Box

Now ω_δ is a sequence of smooth metrics such that $\text{Ric}(\omega_\delta) \geq (1 - K)\omega_\delta$ and the potential φ_δ converges to φ in C^0 norm. By Lemma 3.9, we have a uniform C^2 estimate of φ_δ outside the singularity of ψ. Together with the Evans-Krylov theory, we know that φ_δ converges to φ smoothly in the regular part. The proof of Proposition 3.1 is complete.

Funding information: This study was partially supported by NSFC Grants 11971423 and 12031017.

Conflict of interest: Authors state no conflict of interest.
References

