Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 1, 2015

Development of element technologies for EUVL

  • Hiroo Kinoshita EMAIL logo , Takeo Watanabe and Tetsuo Harada

Abstract

Thirty years have passed since the first report on extreme ultraviolet lithography (EUVL) was presented at the annual meeting of the Japanese Society of Applied Physics in 1986. This technology is now in the manufacturing development stage. The high-volume manufacturing of dynamic-random-access-memory (DRAM) chips with a line width of 15 nm is expected in 2016. However, there are critical development issues that remain: generating a stand-alone EUV source with a higher power and producing a mask inspection tool for obtaining zero-defect masks. The Center for EUVL at the University of Hyogo was established in 2010. At present, it utilizes various types of equipment, such as an EUV mask defect inspection tool, an interference-lithography system, a device for measuring the thickness of carbon contamination film deposited by resist outgassing, and reflectivity measurement systems.


Corresponding author: Hiroo Kinoshita, Center for Extreme Ultraviolet Lithography, University of Hyogo, Ako-gun, Hyogo, Japan, e-mail:

References

[1] H. Kinoshita, R. Kaneko, K. Takei, N. Takeuchi and S. Ishihara, JSAP, 28-ZF-15 (1986) [in Japanese].Search in Google Scholar

[2] H. Kinoshita, K. Kithara, Y. Ishii and Y. Torii, J. Vac. Sci. Technol. B 7, 1648 (1989).10.1116/1.584507Search in Google Scholar

[3] H. Takenaka, Y. Ishiii, H. Kinoshita and K. Kurihara, Proc. SPIE. 1345, 213 (1990).Search in Google Scholar

[4] H. Kinoshita, K. Kurihara and H. Takenaka, Jpn. J. Appl. Phys. 30, 3048 (1991).Search in Google Scholar

[5] K. Kurihara, H. Kinoshita, T. Mizota, T. Haga and Y. Torii, J. Vac. Sci. Technol. B 9, 3189 (1991).10.1116/1.585314Search in Google Scholar

[6] H. Kinoshita, K. Kurihara, T. Mizota, T. Haga, H. Takenaka, et al., Appl. Opt. 32, 7079–7083 (1993).Search in Google Scholar

[7] T. Haga and H. Kinoshita, J. Vac. Sci. Technol. B 13, 2914 (1995).10.1116/1.588278Search in Google Scholar

[8] T. Haga, M. C. K. Tinone, H. Takenaka and H. Kinoshita, Microelectron. Eng. 30, 179–182 (1996).10.1016/0167-9317(95)00221-9Search in Google Scholar

[9] H. Kinoshit and T. Watanabe, J. Photopolym. Sci. Technol. 13, 379–384 (2000).Search in Google Scholar

[10] H. Kinoshita and T. Watanabe, Jpn. J. Appl. Phys. 39, 6771 (2000).Search in Google Scholar

[11] H. Kinoshita, T. Watanabe, Y. Li, A. Miyafuji, T. Oshino, et al., Proc. SPIE. 3997, 70 (2000).Search in Google Scholar

[12] K. Hamamoto, T. Watanabe, H. Tsubakino, H. Kinoshita, T. Shoki, et al., J. Photopolym. Sci. Technol. 14, 567 (2001).Search in Google Scholar

[13] K. Hamamoto, T. Watanabe, H. Hada, H. Komano, S. Kishimura, et al., Proc. SPIE. 4688, 664 (2002).Search in Google Scholar

[14] Y. Fukushima, T. Watanabe, R. Ohnishi, H. Kinoshita, H. Shiotani, et al., J. Photopolym. Sci. Technol. 20, 419–422 (2007).10.2494/photopolymer.20.419Search in Google Scholar

[15] T. Watanabe, Y. Fukushima, H. Shiotani, R. Ohnishi, S. Suzuki, et al., Jpn. J. Appl. Phys. 46, 6118 (2007).Search in Google Scholar

[16] Y. Fukushima, T. Watanabe, R. Ohnishi, H. Shiotani, S. Suzuki, et al., Jpn. J. Appl. Phys. 46, 6198 (2007).Search in Google Scholar

[17] Y. Yamaguchi, Y. Fukushima, T. Iguchi, H. Kinoshita, T. Harada, et al., J. Photopolym. Sci. Technol. 23, 681–686 (2010).Search in Google Scholar

[18] Y. Fukushima, N. Sakagami, T. Kimura, Y. Kamaji, T. Iguchi, et al., Jpn. J. Appl. Phys. 49, 06GD06 (2010).10.1143/JJAP.49.06GD06Search in Google Scholar

[19] Y. Fukushima, Y. Yamaguchi, T. Kimura, T. Iguchi, T. Harada, et al., J. Photopolym. Sci. Technol. 23, 673–680 (2010).10.2494/photopolymer.23.673Search in Google Scholar

[20] T. Urayama, T. Watanabe, Y. Yamaguchi, N. Matsuda, Y. Fukushima, et al., J. Photopolym. Sci. Technol. 24, 153–157 (2011).10.2494/photopolymer.24.153Search in Google Scholar

[21] H. Kinoshita, T. Haga, K. Hamamoto, S. Takada, N. Kazui, et al., J.Vac.Sci.Technol. B22, 264–267 (2004).10.1116/1.1643057Search in Google Scholar

[22] K. Hamamoto, Y. Tanaka, T. Yoshizumi, N. Hosokawa, N. Sakaya, et al., Jpn. J. Appl. Phys. 45, 5378 (2006).Search in Google Scholar

[23] H. Kinoshita, K. Hamamoto, N. Sakaya, M. Hosoya and T. Watanabe, Jpn. J. Appl. Phys. 46, 6113 (2007).Search in Google Scholar

[24] T. Harada, J. Kishimoto, T. Watanabe, H. Kinoshita and D. G. Lee, J. Vac. Sci. Technol. B 27, 3203 (2009).10.1116/1.3258633Search in Google Scholar

[25] T. Harada, M. Nakasuji, T. Kimura, T. Watanabe, H. Kinoshita, et al., J. Vac. Sci. Technol. B 29, 06F503 (2011).10.1116/1.3657525Search in Google Scholar

[26] T. Harada, M. Nakasuji, M. Tada, Y. Nagata, T. Watanabe, et al., Jpn. J. Appl. Phys. 50, 06GB03 (2011).10.7567/JJAP.50.06GB03Search in Google Scholar

[27] T. Harada, M. Nakasuji, T. Kimura, Y. Nagata, T. Watanabe, et al., Proc. SPIE. 8081, 80810K (2011).10.1117/12.896576Search in Google Scholar

[28] H. Kinoshita, T. Harada, M. Nakasuji, Y. Nagata and T. Watanabe, Microelectron. Eng. 88, 2000–2003 (2011).10.1016/j.mee.2011.02.060Search in Google Scholar

[29] M. Nakasuji, A. Tokimasa, T. Harada, Y. Nagata, T. Watanabe, et al., Jpn. J. Appl. Phys. 51, 06FB09 (2012).10.7567/JJAP.51.06FB09Search in Google Scholar

[30] T. Harada, Y. Tanaka, T. Amano, Y. Usui, T. Watanabe, et al., Proc SPIE. 9048, 90483F (2014).10.1117/12.2050936Search in Google Scholar

[31] Y. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, et al., Proc. SPIE. 8076, 80760N (2011).10.1117/12.889519Search in Google Scholar

Received: 2015-3-24
Accepted: 2015-5-13
Published Online: 2015-7-1
Published in Print: 2015-8-1

©2015 THOSS Media & De Gruyter

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/aot-2015-0027/html
Scroll to top button