Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 25, 2016

Methodology for the design, production, and test of plastic optical displacement sensors

Maik Rahlves EMAIL logo , Christian Kelb , Eduard Reithmeier and Bernhard Roth


Optical displacement sensors made entirely from plastic materials offer various advantages such as biocompatibility and high flexibility compared to their commonly used electrical and glass-based counterparts. In addition, various low-cost and large-scale fabrication techniques can potentially be utilized for their fabrication. In this work we present a toolkit for the design, production, and test of such sensors. Using the introduced methods, we demonstrate the development of a simple all-optical displacement sensor based on multimode plastic waveguides. The system consists of polymethylmethacrylate and cyclic olefin polymer which serve as cladding and core materials, respectively. We discuss several numerical models which are useful for the design and simulation of the displacement sensors as well as two manufacturing methods capable of mass-producing such devices. Prior to fabrication, the sensor layout and performance are evaluated by means of a self-implemented ray-optical simulation which can be extended to various other types of sensor concepts. Furthermore, we discuss optical and mechanical test procedures as well as a high-precision tensile testing machine especially suited for the characterization of the opto-mechanical performance of such plastic optical displacement sensors.


This work was funded by the German Research Foundation (DFG) in the framework of the collaborative research center TRR 123-PlanOS. We are grateful to Maher Rezem who provided the hot embossed waveguide samples.


[1] C. I. Merzbacher, A. D. Kersey and E. J. Friebele, Smart. Mater. Struct. 5, 196–208 (1996).10.1088/0964-1726/5/2/008Search in Google Scholar

[2] P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos and J. A. Simões, J. Biomed. Opt. 18, 50903 (2013).10.1117/1.JBO.18.5.050903Search in Google Scholar

[3] C. Markos, W. Yuan, K. Vlachos, G. E. Town and O. Bang, Opt. Express 19, 7790–7798 (2011).10.1364/OE.19.007790Search in Google Scholar

[4] F. J. Arregui, Y. Liu, I. R. Matias and R. O. Claus, Sensor. Actuat. B-Chem. 59, 54–59 (1999).10.1016/S0925-4005(99)00232-4Search in Google Scholar

[5] Z. Chen, J. T. Teo, S. H. Ng and X. Yang, IEEE Sensors. 1–4 (2012).Search in Google Scholar

[6] M. Linec and D. Donlagic, IEEE Sensors J. 7, 1262–1267 (2007).10.1109/JSEN.2007.901252Search in Google Scholar

[7] C. Kelb, M. Rahlves, E. Reithmeier and B. Roth, IEEE Sensors J. 15, 7029–7035 (2015).10.1109/JSEN.2015.2472301Search in Google Scholar

[8] H. Z. Yang, X. G. Qiao, D. Luo, K. S. Lim, W. Y. Chong, et al., Measurement 48, 333–345 (2014).10.1016/j.measurement.2013.11.007Search in Google Scholar

[9] C. Markos, S. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, et al., Opt. Express 21, 4758–4765 (2013).10.1364/OE.21.004758Search in Google Scholar PubMed

[10] G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, et al., Opt. Express 24, 1253–1260 (2016).10.1364/OE.24.001253Search in Google Scholar PubMed

[11] F. Dortu, D. Bernier, I. Cestier, D. Vandormael, C. Emmerechts, et al., in ‘16th International Conference on Transparent Optical Networks – ICTON (2014)’, 1–4.2 (IEEE, Piscataway, NJ, USA).Search in Google Scholar

[12] W. M. Pätzold, C. Reinhardt, A. Demircan and U. Morgner, Opt. Lett. 41, 1269–1272 (2016).10.1364/OL.41.001269Search in Google Scholar PubMed

[13] M. Worgull, Hot Embossing, (William Andrew Publishing, Boston, MA, 2009).10.1016/B978-0-8155-1579-1.50014-8Search in Google Scholar

[14] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, Hoboken, N.J., 2007).Search in Google Scholar

[15] M. G. Moharam, T. K. Gaylord, E. B. Grann and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).10.1364/JOSAA.12.001068Search in Google Scholar

[16] A. Bondeson, T. Rylander and P. Ingelström, Computational Electromagnetics, 2nd ed. (Springer, New York, London, 2012).10.1007/978-1-4614-5351-2Search in Google Scholar

[17] J. N. Fields, C. K. Asawa, O. G. Ramer and M. K. Barnoski, IEEE Photon. Technol. Lett. 17, 867–869 (2005).10.1109/LPT.2005.843952Search in Google Scholar

[18] K. Bescherer, D. Munzke, O. Reich and H.-P. Loock, Appl. Optics 52, B40–B45 (2013).10.1364/AO.52.000B40Search in Google Scholar PubMed

[19] C. Kelb, E. Reithmeier and B. Roth, Proc. SPIE 8977, 89770Y (2014).10.1117/12.2037295Search in Google Scholar

[20] M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, et al., Opt. Express 23, 3614 (2015).10.1364/OE.23.003614Search in Google Scholar PubMed

[21] T. Velten, H. Schuck, W. Haberer and F. Bauerfeld, Int. J. Adv. Manuf. Technol. 47, 73–80 (2010).10.1007/s00170-009-1975-1Search in Google Scholar

[22] M. Rezem, A. Günther, M. Rahlves, B. Roth and E. Reithmeier, Procedia Technol. 15, 514–520 (2014).10.1016/j.protcy.2014.09.011Search in Google Scholar

[23] M. Rezem, C. Kelb, A. Günther, M. Rahlves, E. Reithmeier, et al., Proc. SPIE 9751, 975112 (2016).10.1117/12.2213182Search in Google Scholar

[24] H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto and M. Hosino, Opt. Lett. 28, 2378 (2003).10.1364/OL.28.002378Search in Google Scholar

[25] R. Rother, A.-K. Schuler, C. Müller, O. Prucker, J. Rühe, et al., Proc. SPIE 9627, 96270I (2015).10.1117/12.2191343Search in Google Scholar

[26] K. Gut and K. Nowak, Eur. Phys. J. Spec. Top. 154, 89–92 (2008).10.1140/epjst/e2008-00522-5Search in Google Scholar

[27] T. Feuchter and C. Thirstrup, IEEE Photon. Technol. Lett. 6, 1244–1247 (1994).10.1109/68.329652Search in Google Scholar

[28] A. Boudrioua and J. Loulergue, New approach for loss measurements in optical planar waveguides, Opt. Commun. 137, 37–40 (1997).10.1016/S0030-4018(96)00764-XSearch in Google Scholar

Received: 2016-4-19
Accepted: 2016-5-31
Published Online: 2016-6-25
Published in Print: 2016-8-1

©2016 THOSS Media & De Gruyter

Downloaded on 8.12.2022 from
Scroll Up Arrow