Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 9, 2017

Defined wetting properties of optical surfaces

  • Nadja Felde EMAIL logo , Luisa Coriand , Sven Schröder , Angela Duparré and Andreas Tünnermann

Abstract

Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

Acknowledgments

We gratefully acknowledge the contributions of Daniel Nebule Gurevich (Technion/Israel) and Anne-Sophie-Munser (Fraunhofer IOF) to these investigations.

References

[1] F. Horowitz, L. E. V. S. Brandão, K. C. Camargo, A. F. Michels and N. M. Balzaretti, J. Nanophotonics 7, 73596 (2013).10.1117/1.JNP.7.073596Search in Google Scholar

[2] P. Ragesh, V. Anand Ganesh, S. V. Nair and A. S. Nair, J. Mater. Chem. 2, 14773 (2014).10.1039/C4TA02542CSearch in Google Scholar

[3] T. C. Rangel, A. F. Michels, F. Horowitz and D. E. Weibel, Langmuir 31, 3465 (2015).10.1021/acs.langmuir.5b00193Search in Google Scholar

[4] P. Patel, C. K. Choi and D. D. Meng, J. Assoc. Lab. Autom. 15, 114 (2010).10.1016/j.jala.2009.10.012Search in Google Scholar

[5] J. Zhao, L. Ma, W. Millians, T. Wu and W. Ming, ACS Appl. Mater. Interfaces 8, 9737 (2016).10.1021/acsami.6b00748Search in Google Scholar

[6] L. Cao, A. K. Jones, V. K. Sikka, J. Wu and D. Gao, Langmuir 25, 12444 (2009).10.1021/la902882bSearch in Google Scholar

[7] L. Mazzola, Surf. Eng. 32, 733 (2016).10.1080/02670844.2015.1121319Search in Google Scholar

[8] L. Mazzola, G. Bruno, B. Galasso, V. Quaranta, F. Albano, et al., J. Aeronaut. Aerosp. 6, 1 (2017).10.4172/2168-9792.1000182Search in Google Scholar

[9] A. Marmur, Annu. Rev. Mater. Res. 39, 473 (2009).10.1146/annurev.matsci.38.060407.132425Search in Google Scholar

[10] D. Quéré, Phys. A Stat. Mech. its Appl. 313, 32 (2002).10.1016/S0378-4371(02)01033-6Search in Google Scholar

[11] A. Marmur, Langmuir 19, 8343 (2003).10.1021/la0344682Search in Google Scholar

[12] M. Ramiasa-MacGregor, A. Mierczynska, R. Sedev and K. Vasilev, Nanoscale 8, 4635 (2016).10.1039/C5NR08329JSearch in Google Scholar

[13] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda, Langmuir 15, 4321 (1999).10.1021/la981727sSearch in Google Scholar

[14] R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).10.1021/ie50320a024Search in Google Scholar

[15] A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).10.1039/tf9444000546Search in Google Scholar

[16] J. C. Stover, Optical Scattering: Measurement and Analysis, Third edition, (SPIE Press, Bellingham, Wash, 2012).10.1117/3.975276Search in Google Scholar

[17] S. Schröder, M. Trost, M. Garrick, A. Duparré, X. Cheng, et al., Thin Solid Films 592, 248 (2015).10.1016/j.tsf.2015.02.077Search in Google Scholar

[18] M. Flemming and A. Duparré, Appl. Opt. 45, 1397 (2006).10.1364/AO.45.001397Search in Google Scholar PubMed

[19] Y. Xiu, F. Xiao, D. W. Hess and C. P. Wong, Thin Solid Films 517, 1610 (2009).10.1016/j.tsf.2008.09.081Search in Google Scholar

[20] C. Su, J. Li, H. Geng, Q. Wang and Q. Chen, Appl. Surf. Sci. 253, 2633 (2006).10.1016/j.apsusc.2006.05.038Search in Google Scholar

[21] T. Young, Philos. Trans. R. Soc. London 95, 65 (1805).10.1098/rstl.1805.0005Search in Google Scholar

[22] A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, et al., Appl. Opt. 41, 154 (2002).10.1364/AO.41.000154Search in Google Scholar

[23] A. Marmur, Soft Matter 2, 12 (2006).10.1039/B514811CSearch in Google Scholar

[24] L. Coriand, M. Mitterhuber, A. Duparré and A. Tünnermann, Appl. Opt. 50, C257 (2011).10.1364/AO.50.00C257Search in Google Scholar

[25] A. Marmur, Colloids Surf. A Physicochem. Eng. Asp. 116, 55 (1996).10.1016/0927-7757(96)03585-6Search in Google Scholar

[26] A. von Finck, T. Herffurth, S. Schröder, A. Duparré and S. Sinzinger, Appl. Opt. 53, A259 (2014).10.1364/AO.53.00A259Search in Google Scholar

[27] S. Schröder, A. von Finck and A. Duparré, Adv. Opt. Technol. 4, 361 (2015).Search in Google Scholar

[28] ISO 13696:2002 – Optics and optical instruments – test methods for radiation scattered by optical components (2002).Search in Google Scholar

[29] C. J. Brinker, G. C. Frye, A. J. Hurd and C. S. Ashley, Thin Solid Films 201, 97 (1991).10.1016/0040-6090(91)90158-TSearch in Google Scholar

[30] T. Minami, N. Katata and K. Tadanaga, SPIE 3136, 168 (1997).Search in Google Scholar

[31] M. Flemming, L. Coriand and A. Duparré, J. Adhes. Sci. Technol. 23, 381 (2009).10.1163/156856108X370082Search in Google Scholar

[32] A. Duparré and L. Coriand, in: Adv. Contact Angle, Wettability Adhes, Ed. by K. L. Mittal (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013) pp. 197–201.10.1002/9781118795620.ch11Search in Google Scholar

[33] D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, et al., Europhys. Lett. 74, 299 (2006).10.1209/epl/i2005-10522-3Search in Google Scholar

[34] H. Awada, B. Grignard, C. Jérôme, A. Vaillant, J. De Coninck, et al., Langmuir 26, 17798 (2010).10.1021/la104282qSearch in Google Scholar PubMed

[35] F. Bottiglione and G. Carbone, J. Phys. Condens. Matter 27, 015009 (2015).10.1088/0953-8984/27/1/015009Search in Google Scholar PubMed

[36] J. A. White, M. J. Santos, M. A. Rodríguez-Valverde and S. Velasco, Langmuir 31, 5326 (2015).10.1021/acs.langmuir.5b00834Search in Google Scholar PubMed

[37] T. S. Meiron, A. Marmur and I. S. Saguy, J. Colloid Interface Sci. 274, 637 (2004).10.1016/j.jcis.2004.02.036Search in Google Scholar PubMed

[38] E. Chibowski, Adv. Colloid Interface Sci. 133, 51 (2007).10.1016/j.cis.2007.03.002Search in Google Scholar PubMed

[39] F. J. Montes Ruiz-Cabello, M. A. Rodríguez-Valverde and M. A. Cabrerizo-Vílchez, Adv. Colloid Interface Sci. 206, 320 (2014).10.1016/j.cis.2013.09.003Search in Google Scholar PubMed

[40] M. A. Rodríguez-Valverde, F. J. Montes Ruiz-Cabello and M. A. Cabrerizo-Vílchez, Soft Matter 7, 53 (2011).10.1039/C0SM00939CSearch in Google Scholar

Received: 2017-4-10
Accepted: 2017-5-8
Published Online: 2017-6-9
Published in Print: 2017-10-26

©2017 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/aot-2017-0028/html
Scroll to top button