Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 21, 2018

Broadband and scalable optical coupling for silicon photonics using polymer waveguides

Antonio La Porta , Jonas Weiss EMAIL logo , Roger Dangel , Daniel Jubin , Norbert Meier , Folkert Horst and Bert Jan Offrein


We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.


The authors acknowledge Dow Corning Corporation (Midland, MI, USA) for developing and providing the optical polymers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 688172 (STREAMS) and no. 688572 (WIPE). It was also supported by the Swiss National Secretariat for Education, Research and Innovation (SERI) under contract nos. 15.0339 and 15.0309. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government.


[1] J. Weiss, R. Dangel, J. Hofrichter, F. Horst, D. Jubin, et al., Optical Interconnects for Disaggregated Resources in Future Datacenters, 2014 The European Conference on Optical Communication (ECOC) (Cannes, France, 2014).10.1109/ECOC.2014.6964255Search in Google Scholar

[2] D. A. B. Miller and H. M. Ozaktas, J. Parallel Distrib. Comput. 41, 42–52 (1997).10.1006/jpdc.1996.1285Search in Google Scholar

[3] Y. A. Vlasov, IEEE Commun. Mag. 50, 67–72 (2012).Search in Google Scholar

[4] C. R. Doerr, IEICE Trans. Electron. 96, 950–957 (2013).10.1587/transele.E96.C.950Search in Google Scholar

[5] Y. Hibino, MRS Bull. 28, 365–371 (2003).10.1557/mrs2003.102Search in Google Scholar

[6] X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. T. Chen, IEEE J. Sel. Top. Quant. 19, 196–210 (2013).10.1109/JSTQE.2013.2268386Search in Google Scholar

[7] P. A. Francese, T. Toifl, M. Braendli, C. Menolfi, M. Kossel, et al., 10.6 Continuous-Time Linear Equalization with Programmable Active-Peaking Transistor Arrays in a 14nm FinFET 2mW/Gb/s 16Gb/s 2-Tap Speculative DFE Receiver, IEEE ISSCC (San Francisco, CA, USA, 2015).10.1109/ISSCC.2015.7062988Search in Google Scholar

[8] CISCO, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020 (2016). Available at: in Google Scholar

[9] InfiniBand Trade Association, InfiniBand® Roadmap. Available at:, Accessed: 7/Feb/2018.Search in Google Scholar

[10] A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, et al., Optics for High-Performance Servers and Supercomputers, OFC Conference (San Diego, CA, USA, 2010).10.1364/OFC.2010.OTuH1Search in Google Scholar

[11] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, et al., A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications, IEDM (San Francisco, CA, USA, 2012).10.1109/IEDM.2012.6479162Search in Google Scholar

[12] C. R. Doerr, Front. Phys. 3, 37 (2015).Search in Google Scholar

[13] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, et al., Opt. Express 23, 2487–2511 (2015).10.1364/OE.23.002487Search in Google Scholar PubMed

[14] R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, et al., J. Lightwave Technol. 31, 3915–3926 (2013).10.1109/JLT.2013.2282499Search in Google Scholar

[15] R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, et al., Opt. Express 23, 4736–4750 (2015).10.1364/OE.23.004736Search in Google Scholar PubMed

[16] A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, et al., IEEE J. Sel. Top. Quant. 17, 597–608 (2011).10.1109/JSTQE.2010.2086049Search in Google Scholar

[17] T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morisette, Y. Thibodeau, et al., A Metamaterial Converter Centered at 1490 nm for Interfacing Standard Fibers to Nanophotonic Waveguides, OFC, 2016 (Anaheim, CA, USA, 2016).10.1364/OFC.2016.M2I.3Search in Google Scholar

[18] P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, et al., Si Photonics Based High-Speed Optical Transceivers, ECOC (Amsterdam, The Netherlands, 2012).10.1364/ECEOC.2012.We.1.E.5Search in Google Scholar

[19] I. M. Soganci, A. La Porta, and B. J. Offrein, Opt. Express 21, 16075–16085 (2013).10.1364/OE.21.016075Search in Google Scholar PubMed

[20] T. Barwicz, Y. Taira, S. Takenobu, N. Boyer, A. Janta-Polczynski, et al., Optical Demonstration of a Compliant Polymer Interface between Standard Fibers and Nanophotonic Waveguides, OFC (CA, USA, 2015).10.1364/OFC.2015.Th3F.5Search in Google Scholar

[21] A. La Porta, J. Weiss, R. Dangel, D. Jubin, N. Meier, et al., Silicon Photonics Packaging for Highly Scalable Optical Interconnects, ECTC (San Diego, CA, USA, 2015).10.1109/ECTC.2015.7159765Search in Google Scholar

[22] A. La Porta, R. Dangel, D. Jubin, N. Meier, D. Chelladurai, et al., Scalable Optical Coupling between Silicon Photonics Waveguides and Polymer Waveguides, ECTC (Las Vegas, NV, USA, 2016).10.1109/ECTC.2016.305Search in Google Scholar

[23] A. La Porta, R. Dangel, D. Jubin, F. Horst, N. Meier, et al., Optical Coupling between Polymer Waveguides and a Silicon Photonics Chip in the O-band, OFC (Anaheim, CA, USA, 2016).10.1364/OFC.2016.M2I.2Search in Google Scholar

Received: 2017-10-4
Accepted: 2018-1-24
Published Online: 2018-2-21
Published in Print: 2018-4-25

©2018 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 29.11.2022 from
Scroll Up Arrow