Accessible Requires Authentication Published by De Gruyter February 21, 2018

Broadband and scalable optical coupling for silicon photonics using polymer waveguides

Antonio La Porta, Jonas Weiss, Roger Dangel, Daniel Jubin, Norbert Meier, Folkert Horst and Bert Jan Offrein

Abstract

We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

Acknowledgements

The authors acknowledge Dow Corning Corporation (Midland, MI, USA) for developing and providing the optical polymers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 688172 (STREAMS) and no. 688572 (WIPE). It was also supported by the Swiss National Secretariat for Education, Research and Innovation (SERI) under contract nos. 15.0339 and 15.0309. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government.

References

[1] J. Weiss, R. Dangel, J. Hofrichter, F. Horst, D. Jubin, et al., Optical Interconnects for Disaggregated Resources in Future Datacenters, 2014 The European Conference on Optical Communication (ECOC) (Cannes, France, 2014). Search in Google Scholar

[2] D. A. B. Miller and H. M. Ozaktas, J. Parallel Distrib. Comput. 41, 42–52 (1997). Search in Google Scholar

[3] Y. A. Vlasov, IEEE Commun. Mag. 50, 67–72 (2012). Search in Google Scholar

[4] C. R. Doerr, IEICE Trans. Electron. 96, 950–957 (2013). Search in Google Scholar

[5] Y. Hibino, MRS Bull. 28, 365–371 (2003). Search in Google Scholar

[6] X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. T. Chen, IEEE J. Sel. Top. Quant. 19, 196–210 (2013). Search in Google Scholar

[7] P. A. Francese, T. Toifl, M. Braendli, C. Menolfi, M. Kossel, et al., 10.6 Continuous-Time Linear Equalization with Programmable Active-Peaking Transistor Arrays in a 14nm FinFET 2mW/Gb/s 16Gb/s 2-Tap Speculative DFE Receiver, IEEE ISSCC (San Francisco, CA, USA, 2015). Search in Google Scholar

[8] CISCO, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020 (2016). Available at: https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf. Search in Google Scholar

[9] InfiniBand Trade Association, InfiniBand® Roadmap. Available at: http://www.infinibandta.org/content/pages.php?pg=technology_overview, Accessed: 7/Feb/2018. Search in Google Scholar

[10] A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, et al., Optics for High-Performance Servers and Supercomputers, OFC Conference (San Diego, CA, USA, 2010). Search in Google Scholar

[11] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, et al., A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications, IEDM (San Francisco, CA, USA, 2012). Search in Google Scholar

[12] C. R. Doerr, Front. Phys. 3, 37 (2015). Search in Google Scholar

[13] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, et al., Opt. Express 23, 2487–2511 (2015). Search in Google Scholar

[14] R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, et al., J. Lightwave Technol. 31, 3915–3926 (2013). Search in Google Scholar

[15] R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, et al., Opt. Express 23, 4736–4750 (2015). Search in Google Scholar

[16] A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, et al., IEEE J. Sel. Top. Quant. 17, 597–608 (2011). Search in Google Scholar

[17] T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morisette, Y. Thibodeau, et al., A Metamaterial Converter Centered at 1490 nm for Interfacing Standard Fibers to Nanophotonic Waveguides, OFC, 2016 (Anaheim, CA, USA, 2016). Search in Google Scholar

[18] P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, et al., Si Photonics Based High-Speed Optical Transceivers, ECOC (Amsterdam, The Netherlands, 2012). Search in Google Scholar

[19] I. M. Soganci, A. La Porta, and B. J. Offrein, Opt. Express 21, 16075–16085 (2013). Search in Google Scholar

[20] T. Barwicz, Y. Taira, S. Takenobu, N. Boyer, A. Janta-Polczynski, et al., Optical Demonstration of a Compliant Polymer Interface between Standard Fibers and Nanophotonic Waveguides, OFC (CA, USA, 2015). Search in Google Scholar

[21] A. La Porta, J. Weiss, R. Dangel, D. Jubin, N. Meier, et al., Silicon Photonics Packaging for Highly Scalable Optical Interconnects, ECTC (San Diego, CA, USA, 2015). Search in Google Scholar

[22] A. La Porta, R. Dangel, D. Jubin, N. Meier, D. Chelladurai, et al., Scalable Optical Coupling between Silicon Photonics Waveguides and Polymer Waveguides, ECTC (Las Vegas, NV, USA, 2016). Search in Google Scholar

[23] A. La Porta, R. Dangel, D. Jubin, F. Horst, N. Meier, et al., Optical Coupling between Polymer Waveguides and a Silicon Photonics Chip in the O-band, OFC (Anaheim, CA, USA, 2016). Search in Google Scholar

Received: 2017-10-4
Accepted: 2018-1-24
Published Online: 2018-2-21
Published in Print: 2018-4-25

©2018 THOSS Media & De Gruyter, Berlin/Boston