Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 5, 2018

Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction

Thorsten Kramer EMAIL logo , Stefan Remund , Beat Jäggi , Marc Schmid and Beat Neuenschwander

Abstract

Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10–100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.


Communicated by: Thorsten Kramer


References

[1] New York Times: W. M. Freeman; May 6, 1964, “Theodore H. Maiman, Developer of the Laser Calls It ‘A Solution Seeking a Problem’”.Search in Google Scholar

[2] L. E. Hargrove, R. L. Fork and M. A. Pollack, Appl. Phys. Lett. 5:1, 4–5 (1964).10.1063/1.1754025Search in Google Scholar

[3] H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).10.1063/1.1754253Search in Google Scholar

[4] F. X. Kärtner, E. P. Ippen and S. T. Cundiff, in: ‘Femtosecond Optical Frequency Comb: Principle, Operation, and Applications’, Ed. by J. Ye and S. T. Cundiff (Springer, Boston, MA, 2005).Search in Google Scholar

[5] U. Keller, in: ‘Landolt-Börnstein, Group VIII/1B1, Laser Physics and Applications, Subvolume B: Laser Systems, Part 1’, Ed. by G. Herziger, H. Weber, and R. Proprawe (Springer-Verlag, Berlin, Heidelberg, New York, October 2007), pp. 33–167, ISBN 978-3-540-26033–26032.Search in Google Scholar

[6] U. Keller, Appl. Phys. B 58, 347–363 (1994).10.1007/BF01081874Search in Google Scholar

[7] D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8Search in Google Scholar

[8] Trumpf Laser GmbH, https://www.trumpf.com/de_INT/produkte/laser/kurz-und-ultrakurzpulslaser/.Search in Google Scholar

[9] Edgwave GmbH, http://www.edge-wave.de/web/produkte/ultra-short-pulse-systeme/.Search in Google Scholar

[10] Amphos GmbH, http://www.edge-wave.de/web/produkte/ultra-short-pulse-systeme/.Search in Google Scholar

[11] Fraunhofer-Institut für LasertechnikILT, Aachen, https://www.ilt.fraunhofer.de/de/technologiefelder/laser-und-optik/ultrakurzpulslaser.html.Search in Google Scholar

[12] Institut für Strahlwerkzeuge (IFSW), Stuttgart, http://www.ifsw.uni-stuttgart.de/produkte/produkte.html.Search in Google Scholar

[13] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann, Appl. Phys. A 63, 109 (1996).10.1007/BF01567637Search in Google Scholar

[14] C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben and A Tünnermann, Appl. Surf. Sci. 109–110, 15–19 (1997).10.1016/S0169-4332(96)00613-7Search in Google Scholar

[15] C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, et al., Opt. Commun. 129, 134–142 (1996).10.1016/0030-4018(96)00250-7Search in Google Scholar

[16] D. Breitling, A. Ruf and F. Dausinger, in: ‘Proc. SPIE 5339, Photon Processing in Microelectronics and Photonics III’ (15 July 2004).Search in Google Scholar

[17] F. Dausinger, H. Hugel and V. I. Konov, in: ‘Proc. SPIE 5147, ALT’02 International Conference on Advanced Laser Technologies’, 14 November (2003).Search in Google Scholar

[18] G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat and M. Gedvilas, JLMN J. Laser Micro/Nanoeng. 4, 186–191 (2009).10.2961/jlmn.2009.03.0008Search in Google Scholar

[19] B. Neuenschwander, G. F. Bucher, C. Nussbaum, B. Joss, M. Muralt, et al., in: ‘Proc. SPIE 7584, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XV’, 75840R, 18 February (2010).Search in Google Scholar

[20] B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange and P.-E. Martin, in: ‘Proc. SPIE 8243, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII’, 824307, 16 February (2012). doi: 10.1117/12.908583.10.1117/12.908583Search in Google Scholar

[21] B. Lauer, B. Jäggi and B. Neuenschwander, Phys. Procedia 56, 963–972 (2014).10.1016/j.phpro.2014.08.116Search in Google Scholar

[22] B. Jaeggi, B. Neuenschwander, S. Remund and T. Kramer, in: ‘Proc. SPIE 10091, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII’, 100910J, 20 February (2017). doi: 10.1117/12.2253696.10.1117/12.2253696Search in Google Scholar

[23] B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, et al., JLMN J. Laser Micro/Nanoeng. 12, 258–266 (2017).Search in Google Scholar

[24] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., J. Opt. Soc. Am. B 14, 2716–2722 (1997).10.1364/JOSAB.14.002716Search in Google Scholar

[25] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Procedia 12(Part B), 230–238 (2011).10.1016/j.phpro.2011.03.128Search in Google Scholar

[26] S. I. Anisimov, A. M. Bonch-Bruevich, M. A. El’yashevich, Y. A. Imas, N. A. Pavlenko, et al., Sov. Phys. Tech. Phys. 11, 945–952 (1967).Search in Google Scholar

[27] S. I. Anisimov, B. L. Kapeliovich and T. L. Perel’man, Sov. Phys.-JETP 39, 375–377 (1974).Search in Google Scholar

[28] B. Rethfeld, D. S. Ivanov, M. E Garcia and S. I. Anisimov, J. Phys. D: Appl. Phys. 50, 193001 (2017).10.1088/1361-6463/50/19/193001Search in Google Scholar

[29] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).10.1103/PhysRevB.68.064114Search in Google Scholar

[30] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 63, 109–115 (1996).10.1007/BF01567637Search in Google Scholar

[31] C. Wu and L.V. Zhigilei, Appl. Phys. A 114, 11 (2014).10.1007/s00339-013-8086-4Search in Google Scholar

[32] C. F. Richardson and P. Clancy, Mol. Sim. 7, 335 (1991).10.1080/08927029108022461Search in Google Scholar

[33] X. Wang and X. Xu, J. Heat Transfer 124, 265 (2002).10.1115/1.1445289Search in Google Scholar

[34] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).10.1103/PhysRevB.68.064114Search in Google Scholar

[35] D. S. Ivanov and L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003).10.1103/PhysRevLett.91.105701Search in Google Scholar PubMed

[36] Z. Lin and L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006).10.1103/PhysRevB.73.184113Search in Google Scholar

[37] L. V. Zhigilei, Z. Lin and D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).10.1021/jp902294mSearch in Google Scholar

[38] Z. Lin, E. M. Bringa, E. Leveugle and L. V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010).10.1021/jp909328qSearch in Google Scholar

[39] E. T. Karim, Z. Lin and L. V. Zhigilei, AIP Conf. Proc. 1464, 280 (2012).10.1063/1.4739881Search in Google Scholar

[40] Z. Lin, R. A. Johnson and L. V. Zhigilei, Phys. Rev. B 77, 214108 (2008).10.1103/PhysRevB.77.214108Search in Google Scholar

[41] D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, et al., J. Appl. Phys. 107, 013519 (2010).10.1063/1.3276161Search in Google Scholar

[42] C. Wu, D. A. Thomas, Z. Lin and L. V. Zhigilei, Appl. Phys. A 104, 781 (2011).10.1007/s00339-011-6436-7Search in Google Scholar

[43] L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).10.1063/1.373816Search in Google Scholar

[44] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, et al., JETP Lett. 77, 606 (2003).10.1134/1.1600815Search in Google Scholar

[45] E. Leveugle, D. S. Ivanov and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004).10.1007/s00339-004-2682-2Search in Google Scholar

[46] L. V. Zhigilei, D. S. Ivanov, E. Leveugle, B. Sadigh, E. M. Bringa, Proc. SPIE 5448, 505 (2004).10.1117/12.548821Search in Google Scholar

[47] A. K. Upadhyay and H. M. Urbassek, J. Phys. D Appl. Phys. 38, 2933 (2005).10.1088/0022-3727/38/16/029Search in Google Scholar

[48] A. K. Upadhyay, N. A. Inogamov, B. Rethfeld and H. M. Urbassek, Phys. Rev. B 78, 045437 (2008).10.1103/PhysRevB.78.045437Search in Google Scholar

[49] B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).10.1103/PhysRevB.82.064113Search in Google Scholar

[50] S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, et al., JETP Lett. 95, 176 (2012).10.1134/S0021364012040042Search in Google Scholar

[51] E. Ohmura and I. Fukumoto, Int. J. Jpn. Soc. Prec. Eng. 30, 128 (1996).Search in Google Scholar

[52] L. V. Zhigilei, P. B. S. Kodali and B. J. Garrison, J. Phys. Chem. B 101, 2028 (1997).10.1021/jp9634013Search in Google Scholar

[53] R. F. W. Herrmann, J. Gerlach and E. E. B. Campbell, Appl. Phys. A 66, 35 (1998).10.1007/s003390050634Search in Google Scholar

[54] X. Wu, M. Sadeghi and A. Vertes, J. Phys. Chem. B 102, 4770 (1998).10.1021/jp9806361Search in Google Scholar

[55] C. Schäfer, H. M. Urbassek and L. V. Zhigilei, Phys. Rev. B 66, 115404 (2002).10.1103/PhysRevB.66.115404Search in Google Scholar

[56] L. V. Zhigilei, Appl. Phys. A 76, 339 (2003).10.1007/s00339-002-1818-5Search in Google Scholar

[57] L. V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling and M. I. Zeifman, Chem. Rev. 103, 321 (2003).10.1021/cr010459rSearch in Google Scholar PubMed

[58] P. Lorazo, L. J. Lewis and M. Meunier, Phys. Rev. Lett. 91, 225502 (2003).10.1103/PhysRevLett.91.225502Search in Google Scholar PubMed

[59] N. N. Nedialkov, P. A. Atanasov, S. E. Imamova, A. Ruf, P. Berger, et al., Appl. Phys. A 79, 1121 (2004).10.1007/s00339-004-2659-1Search in Google Scholar

[60] C. Cheng and X. Xu, Phys. Rev. B 72, 165415 (2005).10.1103/PhysRevB.72.165415Search in Google Scholar

[61] P. Lorazo, L. J. Lewis and M. Meunier, Phys. Rev. B 73, 134108 (2006).10.1103/PhysRevB.73.134108Search in Google Scholar

[62] S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov and P. A. Atanasov, J. Phys. D Appl. Phys. 40, 331–340 (2007).10.1088/0022-3727/40/2/008Search in Google Scholar

[63] M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, et al., Appl. Surf. Sci. 253, 6276 (2007).10.1016/j.apsusc.2007.01.077Search in Google Scholar

[64] E. Leveugle and L. V. Zhigilei, J. Appl. Phys. 102, 074914 (2007).10.1063/1.2783898Search in Google Scholar

[65] M. Prasad, P. Conforti and B. J. Garrison, J. Appl. Phys. 101, 103113 (2007).10.1063/1.2740340Search in Google Scholar

[66] L. Zhang and X. Wang, Appl. Surf. Sci. 255, 3097 (2008).10.1016/j.apsusc.2008.08.098Search in Google Scholar

[67] M. Gill-Comeau and L. J. Lewis, Phys. Rev. B 84, 224110 (2011).10.1103/PhysRevB.84.224110Search in Google Scholar

[68] L. V. Zhigilei, A. N. Volkov, E. Leveugle and M. Tabetah, Appl. Phys. A 105, 529 (2011).10.1007/s00339-011-6595-6Search in Google Scholar

[69] S. Sonntag, C. T. Paredes, J. Roth and H.-R. Trebin, Appl. Phys. A 104, 559 (2011).10.1007/s00339-011-6460-7Search in Google Scholar

[70] G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, et al., J. Appl. Phys. 112, 013104 (2012).10.1063/1.4731752Search in Google Scholar

[71] X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).10.1007/s00339-012-7269-8Search in Google Scholar

[72] M. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, et al., MRS Bull. 41, 960–968 (2016).10.1557/mrs.2016.274Search in Google Scholar

[73] C.-J. Lin, F. Spaepen and D. Turnbull, J. Non Cryst. Solids 61–62, 767 (1984).10.1016/S0022-3093(84)80002-2Search in Google Scholar

[74] C. Wu, M. S. Christensen, J.-M. Savolainen, P. Balling and L. V. Zhigilei, Phys. Rev. B Condens. Matter 91, 035413 (2015).10.1103/PhysRevB.91.035413Search in Google Scholar

[75] C. Wu and L. V. Zhigilei, J. Phys. Chem. C 120, 4438 (2016).10.1021/acs.jpcc.6b00013Search in Google Scholar

[76] X. Sedao, M. V. Shugaev, C. Wu, T. Douillard, C. Esnouf, et al., ACS Nano 10, 6995 (2016).10.1021/acsnano.6b02970Search in Google Scholar

[77] J. A. Alonso and J. M. Lopez, Mater. Lett. 4, 316 (1986).10.1016/0167-577X(86)90033-9Search in Google Scholar

[78] J. Finger and M. Reininghaus, Opt. Express 22, 18790–18799 (2014).10.1364/OE.22.018790Search in Google Scholar PubMed

[79] R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, et al., Opt. Express 22, 11312–11324 (2014).10.1364/OE.22.011312Search in Google Scholar PubMed

[80] R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, et al., Opt. Express 25, 3966–3979 (2017).10.1364/OE.25.003966Search in Google Scholar PubMed

[81] F. Bauer, A. Michalowski, T. Kiedrowski and S. Nolte, Opt. Express 23, 1035–1043 (2015).10.1364/OE.23.001035Search in Google Scholar PubMed

[82] J. König, S. Nolte and A. Tünnermann, Opt. Express 13, 10597–10607 (2005).10.1364/OPEX.13.010597Search in Google Scholar PubMed

[83] H. Schlueter, B. Jaeggi, B. Neuenschwander and M. Zimmermann, Laser Focus World 52, 41–44 (2016).Search in Google Scholar

[84] S. Russ, R. Gebs, L. Bauer, U. Keller, T. Meyer et al., Paper 161, Lasers in Manufacturing 2015 (2015).Search in Google Scholar

[85] J. Lopez, R. Kling, R. Torres, A. Lidolff, M. Delaigue, et al., Proc. SPIE 8243, (2012).Search in Google Scholar

[86] F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, et al., Phys. Procedia 41, 698–707 (2013).10.1016/j.phpro.2013.03.136Search in Google Scholar

[87] J. Lopez, A. Lidolff, M. Delaigue, C. Hönninger, S. Ricaud, et al., Paper M401, ICALEO 2011, (2011).Search in Google Scholar

[88] R. Le Harzig, D. Breitling, M. Weikert, S. Sommer, C. Föhl, et al., Appl. Surf. Sci. 249, 322–331 (2005).10.1016/j.apsusc.2004.12.027Search in Google Scholar

[89] B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, et al., Appl. Phys. A 69, 381–383 (1999).10.1007/s003390051018Search in Google Scholar

[90] Pulsar Photonics GmbH, https://www.pulsar-photonics.de/systemtechnik/.Search in Google Scholar

[91] Hamamatsu Photonics K.K., http://www.hamamatsu.com/jp/en/4015.html.Search in Google Scholar

[92] Holoeye Photonics AG, https://holoeye.com/spatial-light-modulators/.Search in Google Scholar

[93] C. Hartmann, T. Fehr, M. Brajdic and A. Gillner, JLMN J. Laser Micro Nanoeng. 2, 44–48 (2007).10.2961/jlmn.2007.01.0009Search in Google Scholar

[94] C. Hartmann and A. Gillner, in: ‘ICALEO Congress Proceedings - Laser Microprocessing Conference’, Orlando (2007), 38–44.Search in Google Scholar

[95] R. Knappe, H. Haloui, A. Seifert, A. Weis and A. Nebel, in: ‘Proc. SPIE 7585, Laser-based Micro- and Nanopackaging and Assembly IV’, 75850H, 23 February (2010). doi.org/10.1117/12.842318.Search in Google Scholar

[96] C. Emmelmann and J. P. Calderón Urbina, Phys. Procedia 12(B), 172–181 (2011).10.1016/j.phpro.2011.03.119Search in Google Scholar

[97] T. Kramer, Y. Zhang, S. Remund, B. Jaeggi, A. Michalowski, et al., JLMN J. Laser Micro Nanoeng. 12, 267–273 (2017).Search in Google Scholar

[98] T. Kramer, B. Neuenschwander, B. Jäggi, S. Remund, et al., Phys. Procedia 83, 123–134 (2016).10.1016/j.phpro.2016.08.024Search in Google Scholar

[99] M. Sailer, F. Bauer, J. Kleiner and M. Kaiser, in: ‘Lasers in Manufacturing Conference (2015)’.Search in Google Scholar

[100] B. Jaeggi, S. Remund, Y. Zhang, T. Kramer and B. Neuenschwander, JLMN J. Laser Micro Nanoeng. 12, 107–114 (2017).10.2961/jlmn.2017.02.0011Search in Google Scholar

Received: 2018-01-26
Accepted: 2018-03-19
Published Online: 2018-05-05
Published in Print: 2018-05-24

©2018 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/aot-2018-0010/html
Scroll Up Arrow