Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 17, 2018

Single pulse femtosecond laser ablation of silicon – a comparison between experimental and simulated two-dimensional ablation profiles

Regina Moser, Matthias Domke, Jan Winter, Heinz P. Huber ORCID logo and Gerd Marowsky


Ultrashort laser pulses are widely used for the precise structuring of semiconductors like silicon (Si). We present here, for the first time, a comparative study of experimentally obtained and numerically simulated two-dimensional ablation profiles based on parameters of commercially relevant and widely used near-infrared and diode pumped femtosecond lasers. Single pulse laser ablation was studied at a center wavelength of 1040 nm and pulse duration of 380 fs (FWHM) in an irradiating fluence regime from 1 J/cm2 to 10 J/cm2. Process thresholds for material transport and removal were determined. Three regimes, scaling with the fluence, could be identified: low and middle fluence regimes and a hydrodynamic motion regime. By comparing the simulated and experimental ablation profiles, two conclusions can be drawn: At 2 J/cm2, the isothermal profile of 3800 K is in excellent agreement with the observed two-dimensional ablation. Thus exceeding a temperature of 3800 K can be accepted as a simplified ablation condition at that fluence. Furthermore, we observed a distinct deviation of the experimental from the simulated ablation profiles for irradiated fluences above 4 J/cm2. This points to hydrodynamic motion as an important contributing mechanism for laser ablation at higher fluences.


This work was partly funded by the Bundesministerium für Wirtschaft und Energie (BMWi) in the project MONOSCRIBE (grant no. 0325922A) and by the DFG in grant no. HU1893/2-1. Support by Spectra Physics Austria is further acknowledged for close collaboration and financial support of the Josef Ressel Centre for material processing with ultrashort pulsed lasers. The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged.


[1] M. C. Downer, R. L. Fork and C. V. Shank, J. Opt. Soc. Am. A Optics Image Sci. Vision. 2, 595–599 (1985).10.1364/JOSAA.2.000595Search in Google Scholar

[2] C. V. Shank, Phys. Rev. Lett. 51, 900–902 (1983).10.1103/PhysRevLett.51.900Search in Google Scholar

[3] C. V. Shank, R. Yen and C. Hirlimann, Phys. Rev. Lett. 50, 454–457 (1983).10.1103/PhysRevLett.50.454Search in Google Scholar

[4] A. Cavalleri, K. Sokolowski-tinten, J. Bialkowski, M. Schreiner and D. Von Der Linde. J. Appl. Phys. 85, 3301 (1999).10.1063/1.369675Search in Google Scholar

[5] K. Sokolowski-tinten, J. Bialkowski and D. Von Der Linde, Phys. Rev. B. 51, 14186–14198 (1995).10.1103/PhysRevB.51.14186Search in Google Scholar

[6] H. M. Van Driel, Phys. Rev. B. 35, 8166 (1987).10.1103/PhysRevB.35.8166Search in Google Scholar

[7] A. Rämer, O. Osmani and B. Rethfeld, J. Appl. Phys. 116, 53508 (2014).10.1063/1.4891633Search in Google Scholar

[8] N. M. Bulgakova and A. V. Bulgakov, Appl. Phys. A. 73, 199–208 (2001).10.1007/s003390000686Search in Google Scholar

[9] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tuennermann, Appl. Phys. A. 63, 109–115 (1997).10.1007/BF01567637Search in Google Scholar

[10] C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben and A. Tuennermann, Appl. Surf. Sci. 109–110, 15–19 (1997).10.1016/S0169-4332(96)00613-7Search in Google Scholar

[11] C. Momma, B. N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tuennermann, et al., Opt. Commun. 129, 134–142 (1996).10.1016/0030-4018(96)00250-7Search in Google Scholar

[12] P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart and M. D. Perry, Appl. Phys. A. 69, S377–S380 (1999).10.1007/s003390051420Search in Google Scholar

[13] X. Liu, D. Du and G. Mourou, IEEE J. Quantum Electron. 10, 1706–1716 (1997).10.1109/3.631270Search in Google Scholar

[14] B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange and P.-E. Martin, Proc. SPIE. 8243 (2012).Search in Google Scholar

[15] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., JOSA B 14, 2716–2722 (1997).10.1364/JOSAB.14.002716Search in Google Scholar

[16] N. Bärsch, K. Körber, A. Ostendorf and K. H. Tönshoff, Appl. Phys. A. 77, 237–242 (2003).10.1007/s00339-003-2118-4Search in Google Scholar

[17] P. Allenspacher, B. Hüttner and W. Riede, Proc. SPIE. 4932 (2003).Search in Google Scholar

[18] P.P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, et al., Phys. Rev. B. 58(5), 2387–2390 (1998).10.1103/PhysRevB.58.2387Search in Google Scholar

[19] J. Bonse, S. Baudach, J. Krüger, W. Kautek and M. Lenzner, Appl. Phys. A. 74, 19–25 (2002).10.1007/s003390100893Search in Google Scholar

[20] G. J. Lee, Y. P. Lee, H. Cheong, C. S. Yoon, C. H. Oh, et al., J. Korean Phys. Soc. 48, 1268–1272 (2006).Search in Google Scholar

[21] G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis and C. Fotakis, Phys. Rev. B. 86, 115316 (2012).10.1103/PhysRevB.86.115316Search in Google Scholar

[22] J. Bonse, A. Rosenfeld and J. Krüger, J. Appl. Phys. 106, 104910 (2009).10.1063/1.3261734Search in Google Scholar

[23] J. Bonse and J. Krüger, J. Appl. Phys. 108, 34903 (2010).10.1063/1.3456501Search in Google Scholar

[24] J. Bonse, M. Munz and H. Sturm, J. Appl. Phys. 97, 13538 (2005).10.1063/1.1827919Search in Google Scholar

[25] Z. Guosheng, P. M. Fauchet and A. E. Siegman, Phys. Rev. B. 26, 5366 (1982).10.1103/PhysRevB.26.5366Search in Google Scholar

[26] S.I. Anisimov, N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, et al., Appl. Phys. A. 92, 939–943 (2008).10.1007/s00339-008-4607-ySearch in Google Scholar

[27] S. I. Anisimov, B. L. Kapeliovich and T. L. Perelman, Soviet Phys. JETP. 39, 375 (1974).Search in Google Scholar

[28] J. K. Chen, D. Y. Tzou and J. E. Beraun, Int. J. Heat Mass Transfer 48, 501–509 (2005).10.1016/j.ijheatmasstransfer.2004.09.015Search in Google Scholar

[29] A. Kiselev, J. Roth and H. Trebin, High Performance Computing in Science and Engineering (Springer Heidelberg, 2016) pp. 189–202.10.1007/978-3-319-47066-5_14Search in Google Scholar

[30] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, et al., JETP Lett. 77, 606–610 (2003).10.1134/1.1600815Search in Google Scholar

[31] B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, et al., Phys. Procedia 12, 164–171 (2011).10.1016/j.phpro.2011.03.118Search in Google Scholar

[32] B. Neuenschwander, G. F. Bucher, G. Hennig, C. Nussbaum, B. Joss, et al., Proc ICALEO, Anaheim, California (2010).Search in Google Scholar

[33] M. Domke, G. Piredda, J. Zehetner and S. Stroj, J. Laser Micro Nanoeng. 11, 100 (2016).10.2961/jlmn.2016.01.0019Search in Google Scholar

[34] J. M. Liu, Opt. Lett. 7, 196 (1982).10.1364/OL.7.000196Search in Google Scholar

[35] J. F. Reintjes and J. C. Mcgroddy, Phys. Rev. Lett. 30, 901 (1973).10.1103/PhysRevLett.30.901Search in Google Scholar

[36] Y. Gan and J. K. Chen. Appl. Phys. A. 105, 427–437 (2011).10.1007/s00339-011-6573-zSearch in Google Scholar

[37] E. D. Palik, in ‘Handbook of Optical Constants of Solids’. (Academic Press, Boston, 1985).Search in Google Scholar

[38] H.S. Sim, S. H. Lee and J. S. Lee, J. Mech. Sci. Technol. 21, 1847–1854 (2007).10.1007/BF03177440Search in Google Scholar

[39] C. P. Grigoropoulos, R. H. Buckholz and G. A. Domoto, J. Appl. Phys. 60, 2304–2309 (1986).10.1063/1.337139Search in Google Scholar

Received: 2018-02-13
Accepted: 2018-04-13
Published Online: 2018-05-17
Published in Print: 2018-08-28

©2018 THOSS Media & De Gruyter, Berlin/Boston

Scroll Up Arrow