Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2019

Transient simulation of laser beam propagation through turbulent cutting gas flow

Frieder Reichenzer, Stefan Dörr and Alois Herkommer

Abstract

For many laser machining applications, an assist gas is required. However, for applications with high pressure or temperature gradients, the density of the assist gas is not homogeneous. Thus, the laser propagation is influenced by the density properties within the turbulent gas. In this article, an overview and example results of the influence of a nozzle geometry on the light propagation in two dimensions are presented.

Keywords: CFD; laser; multiphysics

References

[1] S. Gordeyev and E. Jumper, Prog Aerosp. Sci. 46, 388–400 (2010).10.1016/j.paerosci.2010.06.001Search in Google Scholar

[2] E. J. Jumper and S. Gordeyev, Annu. Rev. Fluid Mech. 49, 419–441 (2017).10.1146/annurev-fluid-010816-060315Search in Google Scholar

[3] H. Ayyalasomayajula, S. Arunajatesan, C. Kannepalli and N. Sinha. Large eddy simulation of a supersonic flow over a backward-facing step for aero-optical analysis. In Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics, January 2006.10.2514/6.2006-1416Search in Google Scholar

[4] H. J. Catrakis and R. C. Aguirre, AIAA J. 42, 1973–1981 (2004).10.2514/1.547Search in Google Scholar

[5] K. Wang and M. Wang. J. Fluid Mech. 696, 122–151 (2012).10.1017/jfm.2012.11Search in Google Scholar

[6] A. Mani, M. Wang and P. Moin. Computational study of aero-optical distortion by turbulent wake. In Fluid Dynamics and Co-located Conferences (American Institute of Aeronautics and Astronautics, Toronto, Ontario, Canada, June 2005).10.2514/6.2005-4655Search in Google Scholar

[7] M. Wang, A. Mani and S. Gordeyev, Annu. Rev. Fluid Mech. 44, 299–321 (2012).10.1146/annurev-fluid-120710-101152Search in Google Scholar

[8] H. Xiao and Z. Fan. Appl. Opt. 49, 5049–5058 (2010).10.1364/AO.49.005049Search in Google Scholar PubMed

[9] S. Chandrasekhar, in ‘Radiative Transfer’, Ed. By D. Morton (Dover publications, New York, 1960).Search in Google Scholar

[10] A. Otto, H. Koch, K.-H. Leitz and M. Schmidt, Physics Procedia, 12:11–20, 2011. Lasers in Manufacturing 2011 – Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing.10.1016/j.phpro.2011.03.003Search in Google Scholar

[11] H. Hu, F. Fetzer, P. Berger and P. Eberhard, GAMM-Mitteilungen 39, 149–169 (2016).10.1002/gamm.201610010Search in Google Scholar

[12] S. S. Kudesia, W. S. O. Rodden, D. P. Hand and J. D. C. Jones, ICALElO 2001, 1439–1448 (2001).Search in Google Scholar

[13] G. C. Rodrigues and J. R. Duflou. J. Phys. D Appl. Phys. 51, 065601 (2018).10.1088/1361-6463/aaa32eSearch in Google Scholar

[14] H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen, et al., Procedia CIRP 52, 292–297 (2016).10.1016/j.procir.2016.08.001Search in Google Scholar

[15] G. Yang, L. Liu, Z. Jiang, J. Guo and T. Wang, Optik 156, 148–154 (2018).10.1016/j.ijleo.2017.10.119Search in Google Scholar

[16] F. Reichenzer, M. Schneider and S. Dörr, AIAA J. 56, 4768–4774 (2018).10.2514/1.J057173Search in Google Scholar

[17] V. A. Denshchikov, V. N. Kondrat’ev and A. N. Romashov, Fluid Dyn. 13, 924–926 (1978).10.1007/BF01050971Search in Google Scholar

[18] V. A. Denshchikov, V. N. Kondrat’ev, A. N. Romashov and V. M. Chubarov, Fluid Dyn. 18, 460–462 (1983).10.1007/BF01090570Search in Google Scholar

[19] J. W. Gregory, J. P. Sullivan and S. Raghu, J. Vis. 8, 169–176 (2005).10.1007/BF03181660Search in Google Scholar

[20] J. W. Gregory, J. Sullivan, G. Raman and S. Raghu, Characterization of a micro fluidic oscillator for flow control. In 2nd AIAA Flow Control Conference (American Institute of Aeronautics and Astronautics, Portland, OR, 2004) p. 2692.10.2514/6.2004-2692Search in Google Scholar

[21] J. W. Gregory, J. P. Sullivan, G. Raman and S. Raghu, AIAA J. 45, 568–576 (2007).10.2514/1.26127Search in Google Scholar

[22] J. W. Gregory and M. N. Tomac. A review of fluidic oscillator development and application for flow control. In 43rd Fluid Dynamics Conference (American Institute of Aeronautics and Astronautics, San Diego, CA, USA, 2013).10.2514/6.2013-2474Search in Google Scholar

[23] S. D. Heister, S. Bidadi and Y. Matsutomi. Atomization Sprays 21, 127–138 (2011).10.1615/AtomizSpr.2011002751Search in Google Scholar

[24] E. J. Meier and S. D. Heister, Int. J. Flow Control 7, 19–36 (2015).10.1260/1756-8250.7.1-2.19Search in Google Scholar

[25] R. P. Pawlowski, A. G. Salinger, J. N. Shadid and T. J. Mountziaris, J. Fluid Mech. 551, 117–139 (2006).10.1017/S0022112005008396Search in Google Scholar

[26] S. Raghu, Exp. Fluids 54, 1455 (2013).10.1007/s00348-012-1455-5Search in Google Scholar

[27] M. N. Tomac and J. Gregory. Frequency studies and scaling effects of jet interaction in a feedback-free fluidic oscillator. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, June 2012).10.2514/6.2012-1248Search in Google Scholar

[28] M. N. Tomac and J. W. Gregory, Exp. Fluids 55, 1730 (2014).10.1007/s00348-014-1730-8Search in Google Scholar

[29] M. N. Tomac. Internal fluid dynamics and frequency characteristics of feedback-free fluidic oscillators. PhD thesis, The Ohio State University, 2013.Search in Google Scholar

[30] S. Raghu. Feedback-free fluidic oscillator and method, July 3 2001. US Patent 6, 253, 782.Search in Google Scholar

[31] J. D. Schmidt. Numerical simulation of optical wave propagation with examples in MATLAB, volume PM199. SPIE, Bellingham, Washington, USA, July 2010.10.1117/3.866274Search in Google Scholar

[32] E. R. Peck and B. N. Khanna, J. Opt. Soc. Am. 56, 1059–1063 (1966).10.1364/JOSA.56.001059Search in Google Scholar

[33] F. Pan and A. Acrivos, J. Fluid Mech. 28, 643–655 (1967).10.1017/S002211206700237XSearch in Google Scholar

Received: 2018-12-16
Accepted: 2019-02-22
Published Online: 2019-04-02
Published in Print: 2019-04-24

©2019 THOSS Media & De Gruyter, Berlin/Boston