Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 10, 2019

Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography

Kohei Goto and Jun Taniguchi EMAIL logo


Methods for fabricating micro- and nanoscale three-dimensional (3D) structures such as electron-beam lithography (EBL) attracted attention in various fields. In EBL, an acceleration-voltage modulation method can be used to control the developing depth of the structure. In this study, we fabricated a rose petal structure using acceleration-voltage modulation. Using a rose petal mold, plastic- and silver-duplicated rose petals were prepared using nano-imprint lithography (NIL). We demonstrated that various complex 3D structures and materials can be duplicated using NIL by applying an acceleration-voltage modulation method.


[1] K. Koch, B. Bhushan, Y. C. Jung and W. Barthlott, Soft Matter 5, 1386 (2009).10.1039/b818940dSearch in Google Scholar

[2] N. A. Patankar, Langmuir 20, 8209 (2004).10.1021/la048629tSearch in Google Scholar PubMed

[3] Y. M. Park, M. Gang, Y. H. Seo and B. H. Kim, Thin Solid Films 520, 362 (2011).10.1016/j.tsf.2011.07.013Search in Google Scholar

[4] A. Fernandez, A. Francone, L. Thamdrup, A. Johansson, B. Bilenberg, et al., ACS Appl. Mater. Interfaces 9, 7701 (2017).10.1021/acsami.6b13615Search in Google Scholar PubMed

[5] K. Y. Yeh, K. H. Cho, Y. H. Yeh, A. Promraksa, C. H. Huang, et al., Nanotechnology 25, 345303 (2014).10.1088/0957-4484/25/34/345303Search in Google Scholar PubMed

[6] B. Bhushan and M. Nosonovsky, Phil. Trans. R. Soc. A 368, 4713 (2010).10.1098/rsta.2010.0203Search in Google Scholar PubMed

[7] N. Unno and J. Taniguchi, J. Phys. Conf. Ser. 106, 012021 (2008).10.1088/1742-6596/106/1/012021Search in Google Scholar

[8] Y. Ishii and J. Taniguchi, Microelectron. Eng. 84, 912 (2007).10.1016/j.mee.2007.01.133Search in Google Scholar

[9] W. Barthlott and C. Neinhuis, Planta 202, 1 (1994).10.1007/s004250050096Search in Google Scholar

[10] H. J. Ensikat, P. D. Kuru, C. Neinhuis and W. Barthlott, Beilstein J. Nanotechnol. 2, 152 (2011).10.3762/bjnano.2.19Search in Google Scholar PubMed PubMed Central

[11] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, et al., Langmuir 24, 4114 (2008).10.1021/la703821hSearch in Google Scholar PubMed

[12] D. Brian and B. Bhushan, Philos. Trans. R. Soc. Lond. A Math., Phys. Eng. Sci. 368, 1929 (2010).Search in Google Scholar

[13] W. Li, J. C. Weaver and G. V. Lauder, J. Exp. Biol. 217, 4775 (2014).Search in Google Scholar

[14] O. Johannes and G. V. Lauder, J. Exp. Biol. 215, 785 (2012).10.1242/jeb.063040Search in Google Scholar PubMed

[15] B. Stuart and D. M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008).10.1063/1.2993231Search in Google Scholar

[16] B. Edward, T. Stein, R. Pogreb, and D. Aurbach, J. Phys. Chem. C 113, 5568 (2009).10.1021/jp900594kSearch in Google Scholar

[17] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997).10.1116/1.589752Search in Google Scholar

[18] S. Y. Chou, P. R. Krauss and P. J. Renstron, Appl. Phys. Lett. 67, 3114 (1995).10.1063/1.114851Search in Google Scholar

[19] S. Y. Chou, P. R. Krauss and P. J. Renstron, J. Vac. Sci. Technol. B 14, 4129 (1996).10.1116/1.588605Search in Google Scholar

[20] A. Gangnaik, Y. M. Geargiev, B. McCathy, N. Petkov, V. Djara, et al., Microelectronic. Eng. 141, 126 (2014).10.1016/j.mee.2014.06.013Search in Google Scholar

[21] K. D. Schock, F. E. Prins, S.Strahle, and D. P. Kem, J. Vac. Sci. Technol. B 15, 2323 (1997).10.1116/1.589638Search in Google Scholar

Received: 2019-02-01
Accepted: 2019-03-15
Published Online: 2019-08-10
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 8.12.2022 from
Scroll Up Arrow