Accessible Unlicensed Requires Authentication Published by De Gruyter June 12, 2019

Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process

Kazuma Kurihara, Ryohei Hokari and Koji Miyake

Abstract

The effects of nanomolding characteristics on an antireflective surface fabricated via injection molding were investigated. The optical property of a sub-wavelength structure (SWS) of our own making was also measured. The sizes of nanostructures fabricated on SWS molds were controlled by changing the average particle diameters used as mask and the time of reactive ion etching. The maximum filling ratio of the injected polymer was increased from 51.7% to 90.4% by changing the average particle diameters from 83.8 nm to 111.2 nm. In addition, the filled ratio of the injected polymer was increased from 51.7% to 73.7% under the same processing conditions. The results of the measurements of the optical property indicated that the reflectance of small-sized and large-sized SWSs fabricated with the same process condition was decreased at the wavelengths of 550 nm and 980 nm, respectively. The wavelength showed that the minimum reflectance was varied from the visible range to the near-infrared range by changing the size of the SWS under the same processing condition. This result led us to conclude that we can obtain antireflection surfaces for any wavelength by varying the size of the SWS under the same injection-molding condition.

References

[1] G. C. Par, Y. M. Song, J.-H. Ha and Y. T. Lee, J. Nanosci. Nanotechnol. 11, 6152–6156 (2011). Search in Google Scholar

[2] C.-H. Sun, P. Jiang and B. Jiang, 92, 061112 (2008). Search in Google Scholar

[3] T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, et al., Appl. Phys. Express 3, 112501 (2010). Search in Google Scholar

[4] J.-H. Shin, H.-J. Choi, G.-T. Kim, J.-H. Choi and H. Lee, Appl. Phys. Express 6, 055001 (2013). Search in Google Scholar

[5] T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, et al., Microsyst. Technol. 11, 86–90 (2005). Search in Google Scholar

[6] B. Päivänranta, T. Saastamoinen and M. A. Kuittinen, Nanotechnology 20, 375301 (2009). Search in Google Scholar

[7] J. Turunen, in ‘Micro-Optics’, Ed. By H. P. Herzig (Taylor & Francis, London, 1998). Search in Google Scholar

[8] K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, et al., Thin Solid Films 516, 7167–7170 (2008). Search in Google Scholar

[9] S. Ji, J. Park and H. Lim, Nanoscale 4, 4603–4610 (2012). Search in Google Scholar

[10] D.-H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, et al., Soft Matter 7, 6404–6407 (2011). Search in Google Scholar

[11] J. Sun, X. Wang, J. Wu, C. Jiang, J. Shen, et al., Sci. Rep. 8, 5438 (2018). Search in Google Scholar

[12] H. Jung and K.-H. Jeong, Appl. Phys. Lett. 101, 203102 (2012). Search in Google Scholar

[13] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, et al., Sol. Energy 76, 277–283 (2004). Search in Google Scholar

[14] H. H. Solak, J. Phys. D: Appl. Phys. 10, R171–R188 (2006). Search in Google Scholar

[15] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, et al., Science 321, 926–939 (2008). Search in Google Scholar

[16] E. Han, K. O. Stuen, Y.-H. La, P. F. Nealey and P. Gopalan, Macromolecules 41, 9090–9097 (2008). Search in Google Scholar

[17] C.-C. Liu, P. F. Nealey, Y.-H. Ting and A. E. Wendt. J. Vac. Sci. Technol., B. 25, 1963–1968 (2007). Search in Google Scholar

[18] B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, et al., ACS Nano 5, 1860–1864 (2011). Search in Google Scholar

[19] T. Yanagishita, M. Masui, N. Ikegawa and H. Masuda, J. Vac. Sci. Tech. B 32, 021809 (2014). Search in Google Scholar

[20] T. Yanagishita, T. Hidaka, M. Suzuki and H. Masuda, J. Vac. Sci. Tech. B 34, 021804 (2016). Search in Google Scholar

[21] Y. Kanamori, M. Okochi and K. Hane, Opt. Express 21, 322–328 (2013). Search in Google Scholar

[22] B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee and G. Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009). Search in Google Scholar

[23] I. Mano, T. Uchida and J. Taniguchi, Microelectron. Eng. 191, 97–103 (2018). Search in Google Scholar

[24] C. David, P. Haberling, M. Schnieper, J. Sochtig and C. Zschokke, Microelectron. Eng. 61–62, 435–440 (2002). Search in Google Scholar

[25] S. S. Oh, C.-G. Choi and Y.-S. Kim, Microelectron. Eng. 87, 2328–2331 (2010). Search in Google Scholar

[26] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, et al., Appl. Phys. Lett. 94, 263118 (2009). Search in Google Scholar

[27] K. Kurihara, Y. Saitou, N. Souma, S. Makihara, H. Kato, et al., Mater. Res. Express 2, 015008 (2015). Search in Google Scholar

Received: 2019-02-05
Accepted: 2019-04-01
Published Online: 2019-06-12
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston