Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 12, 2019

Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process

  • Kazuma Kurihara EMAIL logo , Ryohei Hokari and Koji Miyake

Abstract

The effects of nanomolding characteristics on an antireflective surface fabricated via injection molding were investigated. The optical property of a sub-wavelength structure (SWS) of our own making was also measured. The sizes of nanostructures fabricated on SWS molds were controlled by changing the average particle diameters used as mask and the time of reactive ion etching. The maximum filling ratio of the injected polymer was increased from 51.7% to 90.4% by changing the average particle diameters from 83.8 nm to 111.2 nm. In addition, the filled ratio of the injected polymer was increased from 51.7% to 73.7% under the same processing conditions. The results of the measurements of the optical property indicated that the reflectance of small-sized and large-sized SWSs fabricated with the same process condition was decreased at the wavelengths of 550 nm and 980 nm, respectively. The wavelength showed that the minimum reflectance was varied from the visible range to the near-infrared range by changing the size of the SWS under the same processing condition. This result led us to conclude that we can obtain antireflection surfaces for any wavelength by varying the size of the SWS under the same injection-molding condition.

References

[1] G. C. Par, Y. M. Song, J.-H. Ha and Y. T. Lee, J. Nanosci. Nanotechnol. 11, 6152–6156 (2011).10.1166/jnn.2011.4350Search in Google Scholar PubMed

[2] C.-H. Sun, P. Jiang and B. Jiang, 92, 061112 (2008).Search in Google Scholar

[3] T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, et al., Appl. Phys. Express 3, 112501 (2010).10.1143/APEX.3.112501Search in Google Scholar

[4] J.-H. Shin, H.-J. Choi, G.-T. Kim, J.-H. Choi and H. Lee, Appl. Phys. Express 6, 055001 (2013).10.7567/APEX.6.055001Search in Google Scholar

[5] T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, et al., Microsyst. Technol. 11, 86–90 (2005).10.1007/s00542-004-0412-5Search in Google Scholar

[6] B. Päivänranta, T. Saastamoinen and M. A. Kuittinen, Nanotechnology 20, 375301 (2009).10.1088/0957-4484/20/37/375301Search in Google Scholar PubMed

[7] J. Turunen, in ‘Micro-Optics’, Ed. By H. P. Herzig (Taylor & Francis, London, 1998).Search in Google Scholar

[8] K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, et al., Thin Solid Films 516, 7167–7170 (2008).10.1016/j.tsf.2007.12.088Search in Google Scholar

[9] S. Ji, J. Park and H. Lim, Nanoscale 4, 4603–4610 (2012).10.1039/c2nr30787aSearch in Google Scholar PubMed

[10] D.-H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, et al., Soft Matter 7, 6404–6407 (2011).10.1039/c1sm05302gSearch in Google Scholar

[11] J. Sun, X. Wang, J. Wu, C. Jiang, J. Shen, et al., Sci. Rep. 8, 5438 (2018).10.1038/s41598-018-23771-ySearch in Google Scholar PubMed PubMed Central

[12] H. Jung and K.-H. Jeong, Appl. Phys. Lett. 101, 203102 (2012).10.1063/1.4747717Search in Google Scholar

[13] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, et al., Sol. Energy 76, 277–283 (2004).10.1016/j.solener.2003.08.019Search in Google Scholar

[14] H. H. Solak, J. Phys. D: Appl. Phys. 10, R171–R188 (2006).10.1088/0022-3727/39/10/R01Search in Google Scholar

[15] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, et al., Science 321, 926–939 (2008).10.1126/science.1156401Search in Google Scholar PubMed

[16] E. Han, K. O. Stuen, Y.-H. La, P. F. Nealey and P. Gopalan, Macromolecules 41, 9090–9097 (2008).10.1021/ma8018393Search in Google Scholar

[17] C.-C. Liu, P. F. Nealey, Y.-H. Ting and A. E. Wendt. J. Vac. Sci. Technol., B. 25, 1963–1968 (2007).10.1116/1.2801884Search in Google Scholar

[18] B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, et al., ACS Nano 5, 1860–1864 (2011).10.1021/nn103361dSearch in Google Scholar PubMed

[19] T. Yanagishita, M. Masui, N. Ikegawa and H. Masuda, J. Vac. Sci. Tech. B 32, 021809 (2014).10.1116/1.4868030Search in Google Scholar

[20] T. Yanagishita, T. Hidaka, M. Suzuki and H. Masuda, J. Vac. Sci. Tech. B 34, 021804 (2016).10.1116/1.4943044Search in Google Scholar

[21] Y. Kanamori, M. Okochi and K. Hane, Opt. Express 21, 322–328 (2013).10.1364/OE.21.000322Search in Google Scholar PubMed

[22] B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee and G. Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).10.1143/JJAP.48.010207Search in Google Scholar

[23] I. Mano, T. Uchida and J. Taniguchi, Microelectron. Eng. 191, 97–103 (2018).10.1016/j.mee.2018.01.023Search in Google Scholar

[24] C. David, P. Haberling, M. Schnieper, J. Sochtig and C. Zschokke, Microelectron. Eng. 61–62, 435–440 (2002).10.1016/S0167-9317(02)00425-2Search in Google Scholar

[25] S. S. Oh, C.-G. Choi and Y.-S. Kim, Microelectron. Eng. 87, 2328–2331 (2010).10.1016/j.mee.2010.03.012Search in Google Scholar

[26] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, et al., Appl. Phys. Lett. 94, 263118 (2009).10.1063/1.3171930Search in Google Scholar

[27] K. Kurihara, Y. Saitou, N. Souma, S. Makihara, H. Kato, et al., Mater. Res. Express 2, 015008 (2015).10.1088/2053-1591/2/1/015008Search in Google Scholar

Received: 2019-02-05
Accepted: 2019-04-01
Published Online: 2019-06-12
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 24.9.2023 from https://www.degruyter.com/document/doi/10.1515/aot-2019-0018/html
Scroll to top button