Accessible Unlicensed Requires Authentication Published by De Gruyter May 31, 2019

Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing

Hefei Zhou, Xiaoyang Zhu, Hongke Li and Hongbo Lan

Abstract

In order to realize the mass production of the large-area flexible transparent film heater (FTFH) at low-cost, this paper presents a novel method which can achieve the direct fabrication of the large-area FTFH with Ag-grid by using an electric-field-driven jet deposition micro-scale 3D printing. The effects of the line width and the pitch of the printed Ag-grids on the optical transmittance and the sheet resistance are revealed. A typical FTFH with area of 80 mm × 60 mm, optical transmittance of 91.5% and sheet resistance of 4.7 Ω sq−1 is fabricated by the nano-silver paste with a high silver content (80 wt.%) and high viscosity (up to 20 000 mPa · s). Temperature-time response profiles and heating temperature distribution show that the heating performance of the FTFH has good thermal and mechanical properties. Furthermore, the adhesive force grade between the Ag-grid and the PET substrate measured to be 4B by 3M scotch tape. Therefore, the FTFH fabricated here is expected to be widely used in industry, such as window defroster of vehicles and display or touch screens owing to its striking characteristics of large area and low cost fabrication.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51775288

Award Identifier / Grant number: 51705271

Funding statement: This project was supported by National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, Grant No. 51775288, 51705271) and the Key research and development plan of Shandong Province (Grant No. 2018GGX103022).

References

[1] Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, et al. Adv. Mat. 19, 4284–4287 (2007). Search in Google Scholar

[2] R. Gupta, K. D. M. Rao, S. Kiruthika, G. U. Kulkarni, ACS Appl. Mater. Int. 8, 12559–12575 (2016). Search in Google Scholar

[3] T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. P. Simonato, et al. Small 12, 6052–6075 (2016). Search in Google Scholar

[4] J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, et al. Adv. Func. Mater. 22, 4819–4826 (2012). Search in Google Scholar

[5] H. Kim, H. Lee, I. Ha, J. Jung, P. Won, et al. Adv. Func. Mater. 28, 1801847 (2018). Search in Google Scholar

[6] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, et al. Nat. Nanotech. 6, 296–301 (2011). Search in Google Scholar

[7] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, et al. Adv. Mater. 27, 4744–4751 (2015). Search in Google Scholar

[8] S. Soltanian, R. Rahmanian, B. Gholamkhass, N. M. Kiasari, F. Ko, et al. Advan. Ener. Mater. 3, 1332–1337 (2013). Search in Google Scholar

[9] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, et al. Science. 305, 1273–1276 (2004). Search in Google Scholar

[10] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, et al. Science 309, 1215–1219 (2005). Search in Google Scholar

[11] D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482–1513 (2011). Search in Google Scholar

[12] L. R. Shobin, S. Manivannan, Sol. Ener. Mater. Sol. Cells 174, 469–477 (2018). Search in Google Scholar

[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, et al. Nature 457, 706–710 (2009). Search in Google Scholar

[14] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, et al. Nat. Nanotech. 3, 538–542 (2008). Search in Google Scholar

[15] H. Sun, D. Chen, C. Ye, X. Li, D. Dai, et al. Appl. Sur. Sci. 435, 809–814 (2018). Search in Google Scholar

[16] M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Func. Mater. 22, 421–428 (2012). Search in Google Scholar

[17] M. N. Gueye, A. Carella, R. Demadrille, J.-P. Simonato, ACS App. Mater. Inter. 9, 27250–27256 (2017). Search in Google Scholar

[18] C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, et al. Nano Res. 5, 427–433 (2012). Search in Google Scholar

[19] S. An, H. S. Jo, D. Y. Kim, H. J. Lee, B. K. Ju, et al. Adv. Mater. 28, 7149–7154 (2016). Search in Google Scholar

[20] C. H. Lee, Y. J. Yun, H. Cho, K. S. Lee, M. Park, et al. J. Mater. Chem. C 6, 7847–7854 (2018). Search in Google Scholar

[21] J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, et al. Adv. Func. Mater. 26, 833–840 (2016). Search in Google Scholar

[22] D. Lordan, M. Burke, M. Manning, A. Martin, A. Amann, et al. ACS Appl. Mater. Inter. 9, 4932–4940 (2017). Search in Google Scholar

[23] P. Lu, F. Cheng, Y. Ou, M. Lin, L. Su, et al. Comp. Sci. Tech. 153, 1–6 (2017). Search in Google Scholar

[24] J. Kang, Y. Jang, Y. Kim, S. Cho, J. Suhr, et al. Nanoscale 7, 6567–6573 (2015). Search in Google Scholar

[25] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 26, 6670–6687 (2014). Search in Google Scholar

[26] J. A. Spechler, T. W. Koh, J. T. Herb, B. P. Rand, C. B. Arnold, et al. Advan. Funct. Mater. 25, 7428–7434 (2015). Search in Google Scholar

[27] C. F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, et al. Nat. Commun. 5, 3121 (2014). Search in Google Scholar

[28] T. Iwahashi, R. Yang, N. Okabe, J. Sakurai, J. Lin, et al. Appl. Phys. Let. 105, 223901 (2014). Search in Google Scholar

[29] I. Burgués-Ceballos, N. Kehagias, C. M. Sotomayor-Torres, M. Campoy-Quiles, P. D. Lacharmoise, Sol. Energy Mater. Sol. Cells 127, 50–57 (2014). Search in Google Scholar

[30] R. Eckstein, G. Hernandez-Sosa, U. Lemmer, N. Mechau, Org. Elect. 15, 2135–2140 (2014). Search in Google Scholar

[31] Y. Jang, J. Kim, D. Byun, J. Phys. D: Appl. Phys. 46, 155103 (2013). Search in Google Scholar

Received: 2019-02-14
Accepted: 2019-04-23
Published Online: 2019-05-31
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston