Accessible Unlicensed Requires Authentication Published by De Gruyter May 30, 2019

Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range

Benedikt Stender, Fabian Hilbert, Yannick Dupuis, Alexander Krupp, Willi Mantei and Ruth Houbertz

Abstract

Industrial high-precision 3D Printing (HP3DP) via two-photon absorption (TPA) provides freedom in design for the fabrication of novel products that are not feasible with conventional techniques. Up to now, 2PP-fabrication has only been used for structures on the micrometer scale due to limited traveling ranges of the translation stages and the field-of-view (FoV) of microscope objectives (diameters below 0.5 mm). For industrial applications, not only high throughput but also scalability in size is essential. For this purpose, this contribution gives insights into different manufacturing strategies composed of varying exposure modes, fabrication modes, and structuring modes, which enable the generation of large-scale optical elements without relying on stitching. With strategies like stage-only mode or synchronized movement of galvoscanners and translation stages, optical elements with several millimeters in diameter and freeform shape can be fabricated with optical surface quality.

Funding source: Bundesministerium für Wirtschaft und Energie

Award Identifier / Grant number: TOU-1512-004

Funding statement: Part of the work was funded by Bundesministerium für Wirtschaft und Energie, Funder Id: http://dx.doi.org/10.13039/501100006360, Grant Number: TOU-1512-004.

References

[1] S. Maruo, O. Nakamura and S. Kawata, Opt. Lett. 22, 132 (1997).Search in Google Scholar

[2] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, et al. Opt. Lett. 28, 301 (2003).Search in Google Scholar

[3] R. Houbertz, H. Wolter, V. Schmidt, L. Kuna, V. Satzinger, et al. MRS Proc. 1054, 1054-FF01-04 (2007).Search in Google Scholar

[4] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science 325, 1513–1515 (2009).Search in Google Scholar

[5] A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, et al. Sci. Rep. 6, 1–8 (2016).Search in Google Scholar

[6] T. Gissibl, S. Thiele, A. Herkommer and H. Giessen, Nat. Photonics 10, 554–560 (2016).Search in Google Scholar

[7] S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, et al. J. Biophotonics 5, 687–702 (2012).Search in Google Scholar

[8] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, J. Laser Micro Nanoeng. 5, 209–212 (2010).Search in Google Scholar

[9] F. Böhrnsen, M. Krier, S. Grohmann, N. Hauptmann, M. Frant, et al. Biomed. Mater. 14, 035001 (2019).Search in Google Scholar

[10] M. Farsari, M. Vamvakaki and B. N. Chichkov, J. Opt. 12, 124001 (2010).Search in Google Scholar

[11] D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, et al. Laser Photonics Rev. 8, 458–467 (2014).Search in Google Scholar

[12] L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, et al. Opt. Eng. 56, 1 (2017).Search in Google Scholar

[13] S. Dehaeck, B. Scheid and P. Lambert, Addit. Manuf. 21, 589–597 (2018).Search in Google Scholar

[14] J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, et al. Sci. Rep. 8, 1–9 (2018).Search in Google Scholar

[15] N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, et al. Adv. Mater. Technol. 2, 1700018 (2017).Search in Google Scholar

[16] P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, et al. Nat. Photonics 12, 241–247 (2018).Search in Google Scholar

[17] R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, et al. Thin Solid Films 442, 194–200 (2003).Search in Google Scholar

[18] J. Serbin, R. Houbertz, C. Fallnich and B. N. Chichkov, Laser Micromach. Optoelectron. Device Fabr. 4941, 73 (2003).Search in Google Scholar

[19] T. Stichel, R. Houbertz and B. Hecht, in: ‘11th International Symposium on Laser Precision Microfabrication’, 2010.Search in Google Scholar

[20] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, et al. Adv. Mater. 24, 2710–2714 (2012).Search in Google Scholar

[21] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, Opt. Lett. 41, 4269 (2016).Search in Google Scholar

[22] T. Stichel, Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation (University Library Würzburg, Würzburg, 2014). .Search in Google Scholar

[23] X. Zhou, Y. Hou and J. Lin, AIP Adv. 5, 030701 (2015).Search in Google Scholar

[24] K. S. Lee, R. H. Kim, D. Y. Yang and S. H. Park, Prog. Polym. Sci. 33, 631–681 (2008).Search in Google Scholar

[25] H. Sun and S. Kawata, J. Light. Technol. 21, 624–633 (2003).Search in Google Scholar

[26] M. Malinauskas, H. Gilbergs, A. Ukauskas, V. Purlys, D. Paipulas, et al. J. Opt. 12, 035204 (2010).Search in Google Scholar

[27] L. Jonušauskas, D. Gailevičius, L. Mikoliunaite, D. Sakalauskas, S. Šakirzanovas, et al. Materials (Basel) 10, 1–18 (2017).Search in Google Scholar

[28] B. Stender, W. Mantei, R. Houbertz and B. Hall, Laser Tech. J. 14, 20–23 (2017).Search in Google Scholar

[29] S. Steenhusen, Untersuchungen zur sub-100 nm Strukturierung von Hybridpolymeren mittels Zwei-Photonen Absorption und Anwendungen (Friedrich-Schiller-Universität Jena, Jena, Germany, 2018). .Search in Google Scholar

[30] M. Born and E. Wolf, ‘Principles of Optics’, 6th edition (Pergamon Press, Oxford, 1980).Search in Google Scholar

[31] S. Sinzinger and J. Jahns, ‘Microoptics’, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).Search in Google Scholar

Received: 2019-02-15
Accepted: 2019-04-23
Published Online: 2019-05-30
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston