Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2020

Laser interference ablation by ultrashort UV laser pulses via diffractive beam management

  • Jan-Hendrik Klein-Wiele

    Jan-Hendrik Klein-Wiele received his diploma in physics (1997) from the University of Göttingen. During his diploma, he was working at the Max-Planck-Institute for fluid dynamics in the group of Prof. Tönnies, examining ultrafast optical excitations on sodium cluster films. In 1997, he joined Laser-Laboratorium Göttingen, Germany, where he dedicated his research to the fabrication of periodic nanostructures by direct ultrashort pulse laser ablation. His work includes time-resolved studies of the ablation process, the development of sophisticated optical systems for periodic nanostructuring and the industrial and scientific applications of such structures.

    , Andreas Blumenstein

    Andreas Blumenstein received his B.Sc. in (2011) and M.Sc. in (2013) both in physics from the University of Göttingen. He received his Ph.D. from the University of Kassel in (2019). For his thesis, he worked at the Laser-Laboratorium Göttingen, Germany, investigating ultrashort laser pulse surface nanostructuring and the role of non-equilibrium effects on the energy absorption process. Further research interests are the creation and application of few cycle laser pulses using stretched flexible hollow core fibers.

    , Peter Simon

    Peter Simon received his diploma and Ph.D. degrees in Physics from the University of Szeged in 1982 and 1986, respectively. In 1988, he joined the Laser-Laboratorium Göttingen, where he participated in research associated with the generation, amplification and characterization of femtosecond laser pulses and their application for materials processing. In 1992, he was appointed as a group leader of the High Intensity Laser Technology Group and in 2005 as the Head of the Department of Ultrashort Pulse Photonics. Since 2015 he is heading the Department Short Pulses/Nanostructures. The subjects of his current research include the generation and amplification of ultrashort laser pulses, the compression of energetic few-cycle pulses and the submicron-scale surface texturing of technical materials.

    and Jürgen Ihlemann

    Jürgen Ihlemann received his diploma in physics (1984) and Ph.D. in physical chemistry (1987) from the University of Göttingen. From 1984 to 1988, he was with the the Max-Planck-Institute for biophysical chemistry, Göttingen, where he was working on picosecond laser spectroscopy. In 1989, he joined Laser-Laboratorium Göttingen, Germany, where he is now head of the nanostructure technology group. Research interests are UV laser micro- and nanomachining, patterning of surfaces and thin films and ultrashort pulse laser ablation.

    ORCID logo EMAIL logo

Abstract

The fabrication of periodic surface patterns on various materials by ultrashort ultraviolet (UV) laser pulses is reviewed. Laser interference ablation using two or more coherent beams leads to deterministic, strictly periodic patterns. The generation of the interfering beams is accomplished by diffractive optical elements like gratings, grating systems or computer-generated holograms. The recombination of the diffracted beams is performed by optical imaging or diffractive beam management. Ultrashort UV pulses are especially suited for generating micron- to submicron-sized deterministic periodic patterns on metals and semiconductors.

Award Identifier / Grant number: IH 17/18-1

Award Identifier / Grant number: IH 17/18-2

Funding statement: The present work was supported by the Deutsche Forschungsgemeinschaft (DFG; grants IH 17/18-1 and IH 17/18-2, Funder Id: http://dx.doi.org/10.13039/501100001659).

About the authors

Jan-Hendrik Klein-Wiele

Jan-Hendrik Klein-Wiele received his diploma in physics (1997) from the University of Göttingen. During his diploma, he was working at the Max-Planck-Institute for fluid dynamics in the group of Prof. Tönnies, examining ultrafast optical excitations on sodium cluster films. In 1997, he joined Laser-Laboratorium Göttingen, Germany, where he dedicated his research to the fabrication of periodic nanostructures by direct ultrashort pulse laser ablation. His work includes time-resolved studies of the ablation process, the development of sophisticated optical systems for periodic nanostructuring and the industrial and scientific applications of such structures.

Andreas Blumenstein

Andreas Blumenstein received his B.Sc. in (2011) and M.Sc. in (2013) both in physics from the University of Göttingen. He received his Ph.D. from the University of Kassel in (2019). For his thesis, he worked at the Laser-Laboratorium Göttingen, Germany, investigating ultrashort laser pulse surface nanostructuring and the role of non-equilibrium effects on the energy absorption process. Further research interests are the creation and application of few cycle laser pulses using stretched flexible hollow core fibers.

Peter Simon

Peter Simon received his diploma and Ph.D. degrees in Physics from the University of Szeged in 1982 and 1986, respectively. In 1988, he joined the Laser-Laboratorium Göttingen, where he participated in research associated with the generation, amplification and characterization of femtosecond laser pulses and their application for materials processing. In 1992, he was appointed as a group leader of the High Intensity Laser Technology Group and in 2005 as the Head of the Department of Ultrashort Pulse Photonics. Since 2015 he is heading the Department Short Pulses/Nanostructures. The subjects of his current research include the generation and amplification of ultrashort laser pulses, the compression of energetic few-cycle pulses and the submicron-scale surface texturing of technical materials.

Jürgen Ihlemann

Jürgen Ihlemann received his diploma in physics (1984) and Ph.D. in physical chemistry (1987) from the University of Göttingen. From 1984 to 1988, he was with the the Max-Planck-Institute for biophysical chemistry, Göttingen, where he was working on picosecond laser spectroscopy. In 1989, he joined Laser-Laboratorium Göttingen, Germany, where he is now head of the nanostructure technology group. Research interests are UV laser micro- and nanomachining, patterning of surfaces and thin films and ultrashort pulse laser ablation.

References

[1] J.-H. Klein-Wiele and P. Simon, Mikroproduktion 04/18, 60 (2018).Search in Google Scholar

[2] J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, et al., Appl. Phys. A 99, 691 (2010).10.1007/s00339-010-5719-8Search in Google Scholar

[3] S. Rung, K. Bokan, F. Kleinwort, S. Schwarz, P. Simon, et al., Lubricants 7, 43 (2019).10.3390/lubricants7050043Search in Google Scholar

[4] L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, et al., Adv. Mater. 24, 906 (2012).10.1002/adma.201104331Search in Google Scholar

[5] J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld and J. Krüger, IEEE J. Sel. Top. Quant. Electron. 23, 9000615 (2017).Search in Google Scholar

[6] K.J. Ilcisin and R. Fedosejevs, Appl. Opt. 26, 396 (1987).10.1364/AO.26.000396Search in Google Scholar

[7] T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, et al., Appl. Phys. Lett. 75, 1018 (1999).10.1063/1.124584Search in Google Scholar

[8] S. Pissadakis, L. Reekie, M. N. Zervas and J. S. Wilkinson, J. Appl. Phys. 95, 1634 (2004).10.1063/1.1640793Search in Google Scholar

[9] C. Daniel, F. Mücklich and Z. Liu, Appl. Surf. Sci. 208, 317 (2003).10.1016/S0169-4332(02)01381-8Search in Google Scholar

[10] S. Beckemper, J. Huang, A. Gillner and K. Wang, J. Laser Micro. Nanoeng. 6, 49 (2011).10.2961/jlmn.2011.01.0011Search in Google Scholar

[11] J. Huang, S. Beckemper, A. Gillner and K. Wang, J. Micromech. Microeng. 20, 095004 (2010).10.1088/0960-1317/20/9/095004Search in Google Scholar

[12] P. E. Dyer, R. J. Farley and R. Giedl, Opt. Commun. 115, 327 (1995).10.1016/0030-4018(94)00694-PSearch in Google Scholar

[13] H. M. Phillips and R. A. Sauerbrey, Opt. Eng. 32, 2424 (1993).10.1117/12.155267Search in Google Scholar

[14] P. E. Dyer, R. J. Farley, R. Giedl and D. M. Karnakis, Appl. Surf. Sci. 96–98, 537 (1996).10.1016/0169-4332(95)00528-5Search in Google Scholar

[15] M. Mäder, T. Höche, J. W. Gerlach, R. Böhme and B. Rauschenbach, Phys. Stat. Sol. B 247, 1372 (2010).10.1002/pssb.200945522Search in Google Scholar

[16] R. J. Peláez, C. N. Afonso, J. Bulíř, M. Novotný, J. Lančok, et al., Nanotechnology 24, 095301 (2013).10.1088/0957-4484/24/9/095301Search in Google Scholar PubMed

[17] J.-H. Klein-Wiele and P. Simon, Appl. Phys. Lett. 83, 4707 (2003).10.1063/1.1631746Search in Google Scholar

[18] S. Indrišiūnas, B. Voisiat, M. Gedvilas and G. Račiukaitis, J. Micromech. Microeng. 23, 095034 (2013).10.1088/0960-1317/23/9/095034Search in Google Scholar

[19] J.-H. Klein-Wiele, T. Fricke-Begemann, P. Simon and J. Ihlemann, Opt. Expr. 27, 28902 (2019).10.1364/OE.27.028902Search in Google Scholar PubMed

[20] J. Bekesi, P. Simon and J. Ihlemann, Appl. Phys. A 114, 69 (2014).10.1007/s00339-013-8083-7Search in Google Scholar

[21] J. J. J. Kaakkunen, K. Paivasaari and P. Vahimaa, Appl. Phys. A 103, 267 (2011).10.1007/s00339-011-6366-4Search in Google Scholar

[22] Y. Bourgin, S. Bakkali, Y. Jourlin, S. Tonchev and O. Parriaux, Opt. Lett. 34, 3800 (2009).10.1364/OL.34.003800Search in Google Scholar PubMed

[23] P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale and D. Reid, Appl. Phys. Lett. 64, 3389 (1994).10.1063/1.111284Search in Google Scholar

[24] K. Tsunetomo and T. Koyama, Opt. Lett. 22, 411 (1997).10.1364/OL.22.000411Search in Google Scholar

[25] B. Borchers, J. Békési, P. Simon and J. Ihlemann, J. Appl. Phys. 107, 063106 (2010).10.1063/1.3331409Search in Google Scholar

[26] J. Kaakkunen, J. Bekesi, J. Ihlemann and P. Simon, Appl. Phys. A 101, 225 (2010).10.1007/s00339-010-5824-8Search in Google Scholar

[27] T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa, Appl. Phys. Lett. 82, 2758 (2003).10.1063/1.1569987Search in Google Scholar

[28] J. Bekesi, S. Szatmári, P. Simon and G. Marowsky, Appl. Phys. B 75, 521 (2002).10.1007/s00340-002-0988-3Search in Google Scholar

[29] P. Simon and J. Ihlemann, Appl. Phys. A 63, 505 (1996).10.1007/BF01571681Search in Google Scholar

[30] P. Simon and J. Ihlemann, Appl. Surf. Sci. 109/110, 25 (1997).10.1016/S0169-4332(96)00615-0Search in Google Scholar

[31] K. Chen, J. Ihlemann, P. Simon, I. Baumann and W. Sohler, Appl. Phys. A 65, 517 (1997).10.1007/s003390050617Search in Google Scholar

[32] F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, et al., Appl. Surf. Sci. 138–139, 107 (1999).10.1016/S0169-4332(98)00390-0Search in Google Scholar

[33] J. Ihlemann, J.-H. Klein-Wiele, J. Békési and P. Simon, J. Phys. Conf. Ser. 59, 449 (2007).10.1088/1742-6596/59/1/096Search in Google Scholar

[34] G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, et al., Opt. Expr. 16, 5164 (2008).10.1364/OE.16.005164Search in Google Scholar

[35] J. Békési, J. Meinertz, J. Ihlemann and P. Simon, Appl. Phys. A 93, 27 (2008).10.1007/s00339-008-4680-2Search in Google Scholar

[36] A. Yen, E. H. Anderson, R. A. Ghanbari, M. L. Schattenburg and H. I. Smith, Appl. Opt. 31, 4540 (1992).10.1364/AO.31.004540Search in Google Scholar PubMed

[37] M. Livitziis and S. Pissadakis, Opt. Lett. 33, 1449 (2008).10.1364/OL.33.001449Search in Google Scholar PubMed

[38] J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin, 1997).10.1016/B978-012186030-1/50008-4Search in Google Scholar

[39] J. Bekesi, D. Schäfer, J. Ihlemann and P. Simon, Proc. SPIE 4977, 235 (2003).10.1117/12.479226Search in Google Scholar

[40] Z. Xiong, G. D. Peng, B. Wu and P. L. Chu, J. Lightwave Technol. 17, 2361 (1999).10.1109/50.803031Search in Google Scholar

[41] D. S. Ivanov, V. P. Lipp, A. Blumenstein, F. Kleinwort, V. P. Veiko, et al., Phys. Rev. Appl. 4, 064006 (2015).10.1103/PhysRevApplied.4.064006Search in Google Scholar

Received: 2019-12-02
Accepted: 2020-01-14
Published Online: 2020-02-14
Published in Print: 2020-02-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 8.2.2023 from https://www.degruyter.com/document/doi/10.1515/aot-2019-0068/html
Scroll Up Arrow