Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter August 31, 2019

Cold atom interferometry for inertial sensing in the field

Ravi Kumar ORCID logo and Ana Rakonjac ORCID logo


Atom interferometry is one of the most promising technologies for high precision measurements. It has the potential to revolutionise many different sectors, such as navigation and positioning, resource exploration, geophysical studies, and fundamental physics. After decades of research in the field of cold atoms, the technology has reached a stage where commercialisation of cold atom interferometers has become possible. This article describes recent developments, challenges, and prospects for quantum sensors for inertial sensing based on cold atom interferometry techniques.

Corresponding author: Ravi Kumar, Atomionics Pte. Ltd., 3791 Jalan Bukit Merah #03-01, Singapore, 159471, Singapore, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


[1] L. Marton, J. A. Simpson, and J. A. Suddeth, “Electron beam interferometer,” Phys. Rev., vol. 90, p. 490, 1953, in Google Scholar

[2] H. Rauch, W. Treimer, and U. Bonse, “Test of a single crystal neutron interferometer,” Phys. Lett. A, vol. 47, p. 369, 1974, in Google Scholar

[3] H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping. New York Springer: 1999.Search in Google Scholar

[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett., vol. 75, p. 3969, 1995, in Google Scholar

[5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science, vol. 269, p. 198, 1995, in Google Scholar

[6] L. Hackermüller, S. Uttenthaler, K. Hornberger, et al., “Wave nature of biomolecules and fluorofullerenes,” Phys. Rev. Lett., vol. 91, 2003, Art no. 090408, in Google Scholar

[7] S. Sala, A. Ariga, A. Ereditato, et al., “First demonstration of antimatter wave interferometry,” Sci. Adv., vol. 5, 2019, Art no. eaav7610, in Google Scholar

[8] B. P. Abbott, S. Jawahar, N. Lockerbie, and K. Tokmakov, “LIGO scientific collaboration and virgo collaboration,” Phys. Rev. Lett., vol. 116, 2016, Art no. 061102. .Search in Google Scholar

[9] D. Huang, E. Swanson, C. Lin, et al., “Optical coherence tomography,” Science, vol. 254, p. 1178, 1991, in Google Scholar

[10] H. C. Lefevre, R. A. Bergh, and H. J. Shaw, “All-fiber gyroscope with inertial-navigation short-term sensitivity,” Opt. Lett., vol. 7, pp. 454–456, 1982, in Google Scholar

[11] C. Yu, W. Zhong, B. Estey, J. Kwan, R. H. Parker, and H. Müller, “Atom‐interferometry measurement of the fine structure constant,” Annalen der Physik, vol. 531, 2019, Art no. 1800346, in Google Scholar

[12] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Determination of the Newtonian gravitational constant using atom interferometry,” Phys. Rev. Lett., vol. 100, 2008, Art no. 050801, in Google Scholar

[13] J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science, vol. 315, no. 5805, p. 74, 2007, in Google Scholar

[14] S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “Testing general relativity with atom interferometry,” Phys. Rev. Lett., vol. 98, 2007, Art no. 111102, in Google Scholar

[15] S. Herrmann, H. Dittus, and C. Lämmerzahl, “Testing the equivalence principle with atomic interferometry,” Classical Quant. Grav., vol. 29, 2012, Art no. 184003, in Google Scholar

[16] M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett., vol. 67, p. 181, 1991, in Google Scholar

[17] X. Wu, Z. Pagel, B. S. Malek, et al., “Gravity surveys using a mobile atom interferometer,” Sci. Adv., vol. 5, 2019, Art no. eaax0800, in Google Scholar

[18] G. Stern, B. Battelier, R. Geiger, et al., “Light-pulse atom interferometry in microgravity,” Eur. Phys. J. D, vol. 53, p. 353, 2009, in Google Scholar

[19] Y. Bidel, N. Zahzam, A. Bresson, et al., “Absolute airborne gravimetry with a cold atom sensor,” J. Geod., vol. 94, p. 1, 2020, in Google Scholar

[20] Y. Bidel, N. Zahzam, C. Blanchard, et al., “Absolute marine gravimetry with matter-wave interferometry,” Nat. Commun., vol. 9, p. 1, 2018, in Google Scholar

[21] Becker, D., Lachmann, M. D., Seidel, S. T., et al., “Space-borne Bose–Einstein condensation for precision interferometry,” Nature 2018, 391, .Search in Google Scholar

[22] V. Ménoret, P. Vermeulen, N. Le Moigne, et al., “Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter,” Sci. Rep., vol. 8, p. 1, 2018, in Google Scholar

[23] D. Savoie, M. Altorio, B. Fang, L. A. Sidorenkov, R. Geiger, and A. Landragin, “Interleaved atom interferometry for high-sensitivity inertial measurements,” Sci. Adv., vol. 4, 2018, Art no.eaau7948, in Google Scholar

[24] J. Lautier, L. Volodimer, T. Hardin, et al., “Hybridizing matter-wave and classical accelerometers,” Appl. Phys. Lett., vol. 105, 2014, Art no. 144102, in Google Scholar

[25] M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha, and R. Folman, “Fifteen years of cold matter on the atom chip: promise, realizations, and prospects,” J. Mod. Opt., vol. 63, p. 1840, 2016, in Google Scholar

[26] B. Barrett, P. Cheiney, B. Battelier, F. Napolitano, and P. Bouyer, “Multidimensional atom optics and interferometry,” Phys. Rev. Lett., vol. 122, 2019, Art no. 043604, in Google Scholar

[27] A. Mukherjee, A. Rakonjac, and R. Kumar, “Conceptualization, design and prospects of atom-interferometry based full tensor gravity gradiometer,” in Front. Opt. + Laser Sci. APS/DLS, OSA Tech. Dig. (Optical Soc. Am. 2019), Pap. FS3A.4 (OSA – The Optical Society), 2019, p. FS3A.4, in Google Scholar

[28] Y. Sun, Z. Meng, and F. Li, “Large airborne full tensor gradient data inversion based on a non-monotone gradient method,” Pure Appl. Geophys., vol. 175, p. 1065, 2018, in Google Scholar

[29] M. Dransfield, A. Christensen, M. Rose, P. Stone, and P. Diorio, “FALCON test results from the Bathurst mining camp, “Explor. Geophys., vol. 32, no. 4, p. 243, 2001, in Google Scholar

[30] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A, vol. 65, 2002, Art no. 033608, in Google Scholar

[31] C. A. Affleck, A. Jircitano, “Passive gravity gradiometer navigation system,” in IEEE Symposium on Position Location and Navigation, Las Vegas, NV, USA. IEEE 1990, p. 60–66.Search in Google Scholar

[32] J. McCubbine, F. C. Tontini, V. Stagpoole, E. Smith, and G. O’Brien, “Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies,” SoftwareX, vol. 7, p. 129, 2018, in Google Scholar

Received: 2020-06-09
Accepted: 2020-07-29
Published Online: 2019-08-31
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston