Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter September 7, 2019

Probing Bloch oscillations using a slow-light sensor

Pei-Chen Kuan, Chang Huang and Shau-Yu Lan ORCID logo

Abstract

We implement slow-light under electromagnetically induced transparency condition to measure the motion of cold atoms in an optical lattice undergoing Bloch oscillation. The motion of atoms is mapped out through the phase shift of light without perturbing the external and internal state of the atoms. Our results can be used to construct a continuous motional sensor of cold atoms.


Corresponding author: Shau-Yu Lan, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371, Singapore, E-mail:

Funding source: Singapore Ministry of Education

Award Identifier / Grant number: MOE2017-T2-2-066

Funding source: National Research Foundation Singapore

Award Identifier / Grant number: NRFF2013-12

Acknowledgments

This work is supported by Singapore National Research Foundation under Grant No. NRFF2013-12 and Singapore Ministry of Education under Grants No. MOE2017-T2-2-066.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Singapore National Research Foundation under Grant No. NRFF2013-12 and Singapore Ministry of Education under Grants No. MOE2017-T2-2-066.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules”, Rev. Mod. Phys., vol. 81, 2009, Art no. 1051, https://doi.org/10.1103/REVMODPHYS.81.1051.Search in Google Scholar

[2] A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms”, Nature, vol. 400, pp. 849–852, 1999, https://doi.org/10.1038/23655.Search in Google Scholar

[3] Z.-K. Hu, B.-L. Sun, X.-C. Duan, et al., “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter”, Phys. Rev. A, vol. 88, 2013, Art no. 043610. https://doi.org/10.1103/PhysRevA.88.043610.Search in Google Scholar

[4] M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer”, Phys. Rev. Lett., vol. 81, pp. 971–974, 1998, https://doi.org/10.1103/PhysRevLett.81.971.Search in Google Scholar

[5] B. Barrett, R. Geiger, I. Dutta, et al., “The Sagnac effect: 20 years of development in matter-wave interferometry”, Physics, vol. 15, p. 875–883, 2014, https://doi.org/10.1016/j.crhy.2014.10.009.Search in Google Scholar

[6] P. Asenbaum, C. Overstreet, M. Kim, J. Curti and M. A. Kasevich, “Atom-interferometric test of the equivalence principle at the 10-12 level”, arXiv:2005, 2020, Art no. 11624.Search in Google Scholar

[7] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model”, Science, vol. 360, pp. 191–195, 2018, https://doi.org/10.1126/science.aap7706.Search in Google Scholar

[8] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms”, Nature (London), vol. 510, pp. 518–521, 2014, https://doi.org/10.1038/nature13433.Search in Google Scholar

[9] M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions”, Phys. Rev. Lett., vol. 66, pp. 2297–2300, 1991, https://doi.org/10.1103/PhysRevLett.66.2297.Search in Google Scholar

[10] H. Müller, S.-w. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters”, Phys. Rev. Lett., vol. 100, 2008, Art no. 180405. https://doi.org/10.1103/PhysRevLett.100.180405.Search in Google Scholar

[11] A. Safari, I. De Leon, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd, “Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor”, Phys. Rev. Lett., vol. 116, 2016, Art no. 013601. https://doi.org/10.1103/PhysRevLett.116.013601.Search in Google Scholar

[12] P.-C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S.-Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium”, Nat. Commun., vol. 7, 2016, Art no. 13030. https://doi.org/10.1038/ncomms13030.Search in Google Scholar

[13] Z. Chen, H. M. Lim, C. Huang, R. Dumke, and S. -Y. Lan, “Quantum-Enhanced Velocimetry with Doppler-Broadened Atomic Vapor”, Phys. Rev. Lett., vol. 124, 2020, Art no. 093202. https://doi.org/10.1103/PhysRevLett.124.093202.Search in Google Scholar

[14] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media”, Rev. Mod. Phys., vol. 77, pp. 633–673, 2005. https://doi.org/10.1103/RevModPhys.77.633.Search in Google Scholar

[15] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch Oscillations of Atoms in an Optical Potential”, Phys. Rev. Lett., vol. 76, p. 4508, 1996. https://doi.org/10.1103/PhysRevLett.76.4508.Search in Google Scholar

[16] C. Huang, P.-C. Kuan, and S.-Y. Lan, “Laser Cooling of 85Rb Atoms to the Recoil Temperature Limit”, Phys. Rev. A, vol. 97, 2018, Art no. 023403. https://doi.org/10.1103/PhysRevA.97.023403.Search in Google Scholar

Received: 2020-06-11
Accepted: 2020-08-20
Published Online: 2019-09-07
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston