Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2021

High-power ultrafast fiber lasers for materials processing

  • Tino Eidam EMAIL logo , Sven Breitkopf , Oliver Herrfurth , Fabian Stutzki , Marco Kienel , Steffen Hädrich , Christian Gaida and Jens Limpert

Abstract

State-of-the-art fiber-laser systems can deliver femtosecond pulses at average powers beyond the kilowatt level and multi-mJ pulse energies by employing advanced large-mode-area fiber designs, chirped-pulse amplification, and the coherent combination of parallel fiber amplifiers. By using sophisticated coherent phase control, one or even several output ports can be modulated at virtually arbitrary power levels and switching speeds. In addition, an all-fiber setup for GHz-burst generation is described allowing to access an even wider range of laser parameters. The combination of all these approaches together with the robustness, efficiency, and excellent beam quality inherent to fiber-laser technology has the potential to strongly improve existing materials-processing applications.


Corresponding author: Tino Eidam, Active Fiber Systems GmbH, Jena, Germany, E-mail:

Funding source: German Federal Ministry of Education and Research, Project “PINT”

Award Identifier / Grant number: 13N15244

Funding source: Free State of Thuringia/EFRE,

Award Identifier / Grant number: Project “Ultraflex”

Award Identifier / Grant number: 2018FE0072

Funding source: Free State of Thuringia/EFRE, Project “Parallas”

Award Identifier / Grant number: 2015FE9157

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: German Federal Ministry of Education and Research (project “PINT”, 13N15244, funding program Photonics Research Germany); Free State of Thuringia/EFRE (project “Ultraflex”, 2018FE0072), Free State of Thuringia/EFRE (project “Parallas”, 2015FE9157).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [invited],” JOSA B, vol. 27, no. 11, p. B63, 2010, https://doi.org/10.1364/JOSAB.27.000B63.Search in Google Scholar

[2] T. Webber. Advances in fiber lasers for the materials processing market. Quant. Electron. Laser Sci. Conf., p. JTh4I.4, 2012, https://doi.org/10.1364/CLEO–AT.2012.JTh4I.4.10.1364/CLEO_AT.2012.JTh4I.4Search in Google Scholar

[3] K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: A review,” Adv. Opt. Photon., vol. 7, no. 4, p. 684, 2015, https://doi.org/10.1364/AOP.7.000684.Search in Google Scholar

[4] M. Müller, C. Aleshire, A. Klenke, et al., “10.4 kW coherently combined ultrafast fiber laser,” Opt. Lett., vol. 45, no. 11, pp. 3083–3086, 2020. https://doi.org/10.1364/OL.392843.Search in Google Scholar PubMed

[5] C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-Ghz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun., vol. 366, pp. 404–409, 2016. https://doi.org/10.1016/j.optcom.2015.12.064.Search in Google Scholar

[6] C. Kerse, H. Kalaycıoğlu, P. Elahi, et al.., “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature, vol. 537, no. 7618, pp. 84–88, 2016, https://doi.org/10.1038/nature18619.Search in Google Scholar PubMed

[7] D. J. Förster, B. Jäggi, A. Michalowski, and B. Neuenschwander, “Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses,” Materials, vol. 14, no. 12, p. 3331, 2021, https://doi.org/10.3390/ma14123331.Search in Google Scholar PubMed PubMed Central

[8] B. Mao, A. Siddaiah, Y. Liao, and P. L. Menezes, “Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review,” J. Manuf. Process., vol. 53, pp. 153–173, 2020, https://doi.org/10.1016/j.jmapro.2020.02.009.Search in Google Scholar

[9] S. Mishra and V. Yadava, “Laser Beam Micromachining (LBMM) – A review,” Opt. Laser. Eng., vol. 73, pp. 89–122, 2015. https://doi.org/10.1016/j.optlaseng.2015.03.017.Search in Google Scholar

[10] U. Loeschner, J. Schille, A. Streek, et al.., “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl., vol. 27, no. S2, p. S29303, 2015, https://doi.org/10.2351/1.4906473.Search in Google Scholar

[11] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B, vol. 58, no. 5, pp. 365–372, 1994.10.1007/BF01081875Search in Google Scholar

[12] P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kw Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett., vol. 35, no. 24, pp. 4169–4171, 2010. https://doi.org/10.1364/OL.35.004169.Search in Google Scholar

[13] C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt., vol. 3, no. 10, p. 1182, 1964, https://doi.org/10.1364/AO.3.001182.Search in Google Scholar

[14] P. Russell, “Photonic crystal fibers,” Science (New York, N.Y.), vol. 299, no. 5605, pp. 358–362, 2003, https://doi.org/10.1126/science.1079280.Search in Google Scholar

[15] A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quant. Electron., vol. 7, no. 4, pp. 504–517, 2001, https://doi.org/10.1109/2944.974221.Search in Google Scholar

[16] A. Galvanauskas, “Ultrashort-pulse fiber amplifiers,” in Ultrafast Lasers, New York, CRC Press, 2002, pp. 147–205. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203910207-11/ultrashort-pulse-fiber-amplifiers?context=ubx&refId=c1b312de-42a5-4143-8392-76986c094629.Search in Google Scholar

[17] T. Eidam, S. Hanf, E. Seise, et al., “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett., vol. 35, no. 2, pp. 94–96, 2010. https://doi.org/10.1364/OL.35.000094.Search in Google Scholar

[18] C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics, vol. 7, no. 11, pp. 861–867, 2013, https://doi.org/10.1038/nphoton.2013.273.Search in Google Scholar

[19] J. Limpert, F. Stutzki, F. Jansen, et al.., “Yb-doped large-pitch fibres: Effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl., vol. 1, no. e8, pp. 1–5, 2012, https://doi.org/10.1038/lsa.2012.8.Search in Google Scholar

[20] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., vol. 55, no. 6, pp. 447–449, 1985, https://doi.org/10.1016/0030-4018(85)90151-8.Search in Google Scholar

[21] T. Eidam, J. Rothhardt, F. Stutzki, et al., “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt Express, vol. 19, no. 1, pp. 255–260, 2011. https://doi.org/10.1364/OE.19.000255.Search in Google Scholar PubMed

[22] C. Jauregui, T. Eidam, H.-J. Otto, et al.., “Physical origin of mode instabilities in high-power fiber laser systems,” Opt Express, vol. 20, no. 12, p. 12912, 2012, https://doi.org/10.1364/oe.20.012912.Search in Google Scholar

[23] T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quant. Electron., vol. 11, no. 3, pp. 567–577, 2005, https://doi.org/10.1109/JSTQE.2005.850241.Search in Google Scholar

[24] T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun., vol. 35, no. 3, pp. 441–444, 1980, https://doi.org/10.1016/0030-4018(80)90069-3.Search in Google Scholar

[25] H. Stark, J. Buldt, M. Müller, A. Klenke, and J. Limpert, “1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system,” Opt. Lett., vol. 46, no. 5, p. 969, 2021, https://doi.org/10.1364/OL.417032.Search in Google Scholar PubMed

[26] K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light Sci. Appl., vol. 3, no. 4, p. e149, 2014, https://doi.org/10.1038/lsa.2014.30.Search in Google Scholar

[27] P. Lickschat, A. Demba, and S. Weissmantel, “Ablation of steel using picosecond laser pulses in burst mode,” Appl. Phys. A, vol. 123, no. 2, 2017, https://doi.org/10.1007/s00339-016-0743-y.Search in Google Scholar

[28] J. Li, E. Ertorer, and P. R. Herman, “Ultrafast laser burst-train filamentation for non-contact scribing of optical glasses,” Opt Express, vol. 27, no. 18, pp. 25078–25090, 2019, https://doi.org/10.1364/OE.27.025078.Search in Google Scholar PubMed

[29] G. Bonamis, E. Audouard, C. Hönninger, et al., “Systematic study of laser ablation with GHz bursts of femtosecond pulses,” Opt Express, vol. 28, no. 19, pp. 27702–27714, 2020. https://doi.org/10.1364/OE.400624.Search in Google Scholar PubMed

[30] S. Min, Y. Zhao, and S. Fleming, “Repetition rate multiplication in figure-eight fibre laser with 3dB couplers,” Opt. Commun., vol. 277, no. 2, pp. 411–413, 2007. https://doi.org/10.1016/j.optcom.2007.05.050.Search in Google Scholar

[31] A. Klenke, M. Müller, H. Stark, et al.., “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett., vol. 43, no. 7, p. 1519, 2018, https://doi.org/10.1364/ol.43.001519.Search in Google Scholar

[32] A. Steinkopff, C. Jauregui, C. Aleshire, A. Klenke, and J. Limpert, “Impact of thermo-optical effects in coherently combined multicore fiber amplifiers,” Opt. Express, vol. 28, no. 25, pp. 38093–38105, 2020, https://doi.org/10.1364/OE.410614.Search in Google Scholar PubMed

Received: 2021-07-15
Accepted: 2021-09-27
Published Online: 2021-10-15
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.2.2023 from https://www.degruyter.com/document/doi/10.1515/aot-2021-0033/html
Scroll Up Arrow