Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2017

In vitro effects of purine and pyrimidine analogues on Leishmania donovani and Leishmania infantum promastigotes and intracellular amastigotes

Samira Azzouz and Philippe Lawton
From the journal Acta Parasitologica

Abstract

Inhibition of parasite metabolic pathways is a rationale for new chemotherapeutic strategies. The pyrimidine and purine salvage pathways are thus targets against Leishmania donovani and L. infantum, causative agents of visceral human leishmaniasis and canine leishmaniosis. The antiproliferative effect of the pyrimidine analogues Cytarabine and 5-fluorouracil and of the purine analogues Azathioprine and 6-mercaptopurine was evaluated in vitro on the promastigote and the intracellular amastigote stages of the parasite. Cytarabine and 5-fluorouracil were the best inhibitors against promastigotes, whereas 5- fluorouracil and azathioprine displayed the best efficacy against the amastigote stage. The ultrastructural study showed an important cytoplasmic vacuolization and with azathioprine and 5-fluorouracyl, a mitochondrial swelling and appearance of autophagosome-like structures. Alterations of the kinetoplast were also observed with 5-fluorouracil, all these damages eventually resulting in an autolysis process that triggered the subsequent death of the intracellular parasites.

References

Balasegaram M., Ritmeijer K., Lima M.A., Burza S., Ortiz Genovese G., Milani B., et al. 2012. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opinion on Emerging Drugs, 17, 493–510. 10.1517/14728214.2012.748036Search in Google Scholar

Carter N.S., Yates P.A., Gessford S.K., Galagan S.R., Landfear S.M., Ullman B. 2010. Adaptive responses to purine starvation in Leishmania donovani. Molecular Microbiology, 78, 92–107. 10.1111/j.1365-2958.2010.07327.xSearch in Google Scholar

Croft S.L., Olliaro P. 2011. Leishmaniasis chemotherapy–challenges and opportunities. Clinical Microbiology and Infection, 17, 1478–1483. 10.1111/j.1469-0691.2011.03630.xSearch in Google Scholar

Croft S.L., Sundar S., Fairlamb A.H. 2006. Drug resistance in leishmaniasis. Clinical Microbiological Reviews, 19, 111–126. 10.1128/CMR.19.1.111–126.2006Search in Google Scholar

De Koning H.P., Bridges D.J., Burchmore R.J.S. 2005. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiology Reviews, 29, 987–1020. 10.1016/j.femsre.2005.03.004Search in Google Scholar

Dorlo T.P.C., Balasegaram M., Beijnen J.H., de Vries P.J., 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. 10.1093/jac/dks275Search in Google Scholar

Eklund B.I., Moberg M., Bergquist J., Mannervik B. 2006. Divergent activities of human glutathione transferases in the bioactivation of azathioprine. Molecular Pharmacology, 70, 747–754. 10.1124/mol.106.025288Search in Google Scholar

Farca A.M., Miniscalco B., Badino P. Odore R., Monticelli P., Trisciu oglio A., Ferroglio E. 2012. Canine leishmaniosis: in vitro efficacy of miltefosine and marbofloxacin alone or in combination with allopurinol against clinical strains of Leishmania infantum. Parasitology Research, 110, 2509–2513. 10.1007/s00436-011-2792-7Search in Google Scholar

Freitas E.O., Nico D., Guan R., Meyer-Fernandes J.R., Clinch K., Evans G.B., et al. 2015. Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro. PLoS One, 10, e0124183. 10.1371/journal.pone.0124183Search in Google Scholar

Lawton P., Hejl C., Mancassola R., Naciri M., Petavy A.F. 2003. Effects of purine nucleosides on the in vitro growth of Cryptosporidium parvum. FEMS Microbiology Letters, 226, 39–43. 10.1016/S0378-1097(03)00555-XSearch in Google Scholar

Leroux A.E., Krauth-Siegel R.L. 2015. Thiol redox biology of Trypanosomatids and potential targets for chemotherapy. Molecular and Biochemical Parasitology, 10.1016/j.molbiopara.2015.11.003Search in Google Scholar

Martin J.L., Yates P.A., Soysa R., Alfaro J.F., Yang F., Burnum-Johnson K.E., et al. 2014. Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathogens, 10, e1003938. 10.1371/journal.ppat.1003938Search in Google Scholar

Mondal S., Roy J.J., Bera T. 2014. Generation of adenosine tri-phosphate in Leishmania donovani amastigote forms. Acta Parasitologia, 59, 11–16. 10.2478/s11686-014-0203-9Search in Google Scholar

Monge-Maillo B., López-Vélez R. 2013. Therapeutic options for visceral leishmaniasis. Drugs, 73, 1863–1888. 10.1007/s40265-013-0133-0Search in Google Scholar

Pachioni J. de A., Magalhães J.G., Lima E.J.C., Bueno L. de M., Barbosa J.F., de Sá M.M., Rangel-Yagui C.O., 2013. Alkylphospholipids - a promising class of chemotherapeutic agents with a broad pharmacological spectrum. Journal of Pharmacy and Pharmaceutical Sciences, 16, 742–759. 10.18433/J3990VSearch in Google Scholar

Serafim T.D., Figueiredo A.B., Costa P.A.C., Marques-da-Silva E.A., Gonçalves R., de Moura S.A.L., et al. 2012. Leishmania metacyclogenesis is promoted in the absence of purines PLoS Neglected Tropical Diseases, 6, e1833. 10.1371/journal.pntd.0001833Search in Google Scholar

Solano-Gallego L., Miró G., Koutinas A., Cardoso L., Pennisi M.G., Ferrer L., et al. 2011. LeishVet guidelines for the practical management of canine leishmaniosis. Parasites & Vectors, 4, 86–102. 10.1186/1756-3305-4-86Search in Google Scholar

Soysa R., Wilson Z.N., Elferich J., Forquer I., Shinde U., Riscoe M.K., et al. 2013. Substrate inhibition of uracil phosphoribosyltransferase by uracil can account for the uracil growth sensitivity of Leishmania donovani pyrimidine auxotrophs. Journal of Biological Chemistry, 288, 29954–29964. 10.1074/jbc.M113.478826Search in Google Scholar

Sundar S., Chakravarty J. 2013. Leishmaniasis: an update of current pharmacotherapy. Expert Opinion on Pharmacotherapy, 14, 53–63. 10.1517/14656566.2013.755515Search in Google Scholar

Vincent I.M., Barrett M.P. 2015. Metabolomic-based strategies for anti-parasite drug discovery. Journal of Biomolecular Screening, 20, 44–55. 10.1177/1087057114551519Search in Google Scholar

Received: 2017-1-31
Revised: 2017-4-12
Accepted: 2017-4-26
Published Online: 2017-7-5
Published in Print: 2017-9-26

© 2017 W. Stefański Institute of Parasitology, PAS