Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 17, 2018

Characterization of phosphate transporter(s) and understanding their role in Leishmania donovani parasite

K.J. Sindhu, Amit Kumar Kureel, Sheetal Saini, Smita Kumari, Pankaj Verma and Ambak Kumar Rai
From the journal Acta Parasitologica

Abstract

Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.

  1. Conflicts of interest: The authors declare no conflict of interest.

Acknowledgement

The authors thank all support received from Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad. We are thankful to Dr. Anuradha Dube and Dr. Amogh Sahtrabuddhe (Central Drug Research Institute, Lucknow, India) for providing promastigote culture of Leishmania donovani. We also acknowledge Centre for Medical Diagnostics and Research (CMDR) for allowing us to use real time PCR facility. This work is carried out as a part of dissertation of Ms. Sindhu K. J. in the fulfilment of her M. Tech. degree.

Supplementary References

Bernsel A., Viklund H., Falk J., Lindahl E., von Heijne G., Elofsson A. 2008. Prediction of membrane-protein topology from first principles. . Proceedings of the National Academy of Sciences of the United States of America, 105, 7177-7181. 10.1073/pnas.0711151105Search in Google Scholar PubMed PubMed Central

Hessa T., Meindl-Beinker N.M., Bernsel A., Kim H., Sato Y., Lerch-Bader M., Nilsson I., White S.H., von Heijne G. 2007. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 450, 1026–1030. 10.1038/nature06387Search in Google Scholar PubMed

Käll L., Krogh A., Sonnhammer E.L. 2005. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 21, 251–25710.1093/bioinformatics/bti1014Search in Google Scholar PubMed

Reynolds S.M., K.L., Riffle M.E, Bilmes J.A., Noble W.S. 2008. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Computer Biology, 4, e1000213. https://doi.org/10.1371/journal.pcbi.100021310.1371/journal.pcbi.1000213Search in Google Scholar PubMed PubMed Central

Viklund H., Elofsson A. 2008. OCTOPUS: method that improves topology prediction for transmembrane proteins by using twotrack ANN-based preference scores and an improved topological grammar. Bioinformatics, 24, 1662–166810.1093/bioinformatics/btn221Search in Google Scholar PubMed

Viklund H., Bernsel A., Skwark M., Elofsson A. 2008. SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics, 24, 2928–292910.1093/bioinformatics/btn550Search in Google Scholar PubMed

References

Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201. 10.1093/bioinformatics/bti770Search in Google Scholar PubMed

Benkert P., Tosatto S.C., Schomburg D. 2008. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 71, 261–277. 10.1002/prot.21715Search in Google Scholar PubMed

Bernsel A., Viklund H., Hennerdal A., Elofsson A. 2009. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Research, 37, W465–468. 10.1093/nar/gkp363Search in Google Scholar PubMed PubMed Central

Boutet E., Lieberherr D., Tognolli M., Schneider M., Bansal P., Bridge A.J. et al. 2016. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods in Molecular Biology, 1374, 23–54. 10.1007/978-1-4939-3167-5_2Search in Google Scholar PubMed

Burns D.J., Beever R.E. 1977. Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. Journal of Bacteriology, 132, 511–51910.1128/jb.132.2.511-519.1977Search in Google Scholar PubMed

Callens M., Kuntz D.A., Opperdoes F.R. 1991. Characterization of pyruvate kinase of Trypanosoma brucei and its role in the regulation of carbohydrate metabolism. Molecular and Biochemical Parasitology, 47, 19–2910.1016/0166-6851(91)90144-USearch in Google Scholar PubMed

Coombs G.H., Craft J.A., Hart D.T. 1982. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Molecular and Biochemical Parasitology, 5, 199–21110.1016/0166-6851(82)90021-4Search in Google Scholar PubMed

Desjeux P. 2001. The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 239–24310.1016/S0035-9203(01)90223-8Search in Google Scholar PubMed

Desjeux P. 2004. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases, 27, 305–318. 10.1016/j.cimid.2004.03.004Search in Google Scholar PubMed

Dick C.F., Dos-Santos A.L., Fonseca-de-Souza A.L., Rocha-Ferreira J., Meyer-Fernandes J.R. 2010. Trypanosoma rangeli: differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Experimental Parasitology, 124, 386–393. 10.1016/j.exppara.2009.12.006Search in Google Scholar PubMed

Dick C.F., Dos-Santos A.L., Majerowicz D., Gondim K.C., Caruso-Neves C., Silva I.V., et al. 2012. Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochimica et Biophysica Acta, 1820, 1001–1008. 10.1016/j.bbagen.2012.02.019Search in Google Scholar PubMed

Dick C.F., Dos-Santos A.L., Meyer-Fernandes J.R. 2014. Inorganic phosphate uptake in unicellular eukaryotes. Biochimica et Biophysica Acta, 1840, 2123–2127. 10.1016/j.bbagen.2014.03.014Search in Google Scholar PubMed

Docampo R., Ulrich P., Moreno S. N. 2010. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philosophical Transactions of the Royal Society Biological Sciences, 365, 775–784. 10.1098/rstb.2009.0179Search in Google Scholar PubMed PubMed Central

Drew M.E., Langford C.K., Klamo E.M., Russell D.G., Kavanaugh M.P., Landfear S.M. 1995. Functional Expression of a myo-Inositol/H1 Symporter from Leishmania donovani. Molecular and Cellular Biology, 15, 5508–551510.1128/MCB.15.10.5508Search in Google Scholar PubMed PubMed Central

Dujardin J.C. 2006. Risk factors in the spread of leishmaniases: towards integrated monitoring? Trends in Parasitology, 22, 4–6. 10.1016/j.pt.2005.11.004Search in Google Scholar PubMed

Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., et al. 2001. Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59. 10.1016/S1093-3263(00)00138-8Search in Google Scholar

Dunker A.K., Silman I., Uversky V.N., Sussman J.L. 2008. Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 18, 756–764. 10.1016/j.sbi.2008.10.002Search in Google Scholar PubMed

Dyson H.J., Wright P.E. 2005. Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208. 10.1038/nrm1589Search in Google Scholar PubMed

Ernest I., Callens M., Opperdoes F.R., Michels P.A. 1994. Pyruvate kinase of Leishmania mexicana mexicana. Cloning and analysis of the gene, overexpression in Escherichia coli and characterization of the enzyme. Molecular and Biochemical Parasitology, 64, 43–5410.1016/0166-6851(94)90133-3Search in Google Scholar PubMed

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. 10.1111/j.1558-5646.1985.tb00420.xSearch in Google Scholar PubMed

Fiser A., Sali A. 2003. ModLoop: automated modeling of loops in protein structures. Bioinformatics, 19, 2500–250110.1093/bioinformatics/btg362Search in Google Scholar PubMed

Fiser A., Do R.K., Sali A. 2000. Modeling of loops in protein structures. Protein Science, 9, 1753–1773. 10.1110/ps.9.9.1753Search in Google Scholar PubMed PubMed Central

Guex N., Peitsch M.C., Schwede T. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. . Electrophoresis, 30, 162–173. 10.1002/elps.200900140Search in Google Scholar PubMed

Kumar S., Stecher G., Tamura K. 2015. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. 10.1093/molbev/msw054Search in Google Scholar PubMed PubMed Central

Lamarche M.G., Wanner B.L., Crepin S., Harel J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews, 32, 461–473. 10.1111/j.1574-6976.2008.00101.xSearch in Google Scholar PubMed

Lanzetta P.A., Alvarez L.J., Reinach P., Candia O.A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry, 100, 95–9710.1016/0003-2697(79)90115-5Search in Google Scholar PubMed

Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25, 402–408. 10.1006/meth.2001.1262Search in Google Scholar

Lom J. 1976. Biology of the trypanosomes and trypanoplasms of fish. In: (Eds W. H. R. Lumsden, and D. A. Evans) Biology of the Kinetoplastida. Academic Press, London/New York/San Francisco. 269–337Search in Google Scholar

Lovell S.C., Davis I.W., Arendall W.B., de Bakker P.I., Word J.M., Prisant M.G., et al. 2003. Structure validation by C-alpha geometry: phi, psi and C-beta deviation. Proteins, 50, 437–450. 10.1002/prot.10286Search in Google Scholar

Lowendorf H.S., Slayman C.L., Slayman C.W. 1974. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low-affinity transport system. Biochimica et Biophysica Acta, 373, 369–38210.1016/0005-2736(74)90017-0Search in Google Scholar PubMed

Margarane M., UniProt Consorsium. 2011. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford), 2011, bar009. 10.1093/database/bar009Search in Google Scholar PubMed

Martinez P., Persson B.L. 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 258, 628–63810.1007/s004380050776Search in Google Scholar

Mason P.W., Carbone D.P., Cushman R.A., Waggoner A.S. 1981. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. Journal of Biological Chemistry, 256, 1861–1866.10.1016/S0021-9258(19)69886-8Search in Google Scholar

McGwire B.S., Satoskar A.R. 2014. Leishmaniasis: clinical syndromes and treatment. QJM, 107, 7–14. 10.1093/qjmed/hct116Search in Google Scholar PubMed PubMed Central

Michels P., Bringaud F., Herman M., Hannaert V. 2006. Metabolic functions of glycosomes in trypanosomatids. Biochimica et Biophysica ActaMolecular Cell Research, 1763, 1463–1477. 10.1016/j.bbamcr.2006.08.019Search in Google Scholar PubMed

Oshima Y. 1997. The phosphatase system in Saccharomyces cerevisiae. Genes & Genetic Systems, 72, 323–33410.1266/ggs.72.323Search in Google Scholar PubMed

Pabon M.A., Caceres A.J., Gualdron M., Quinones W., Avilan L., Concepcion J.L. 2007. Purification and characterization of hexokinase from Leishmania mexicana. Parasitology Research, 100, 803–810. 10.1007/s00436-006-0351-4Search in Google Scholar PubMed

Persson B.L., Berhe A., Fristedt U., Martinez P., Pattison J., Petersson J., Weinander R. 1998. Phosphate permeases of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1365, 23–30. 10.1016/S0005-2728(98)00037-1Search in Google Scholar PubMed

Persson B.L., Petersson J., Fristedt U., Weinander R., Berhe A., Pattison J. 1999. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochimica et Biophysica Acta, 1422, 255–27210.1016/S0304-4157(99)00010-6Search in Google Scholar PubMed

Pillai A.D., Addo R., Sharma P., Nguitragool W., Srinivasan P., Desai S. A. 2013. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodeling. Molecular Microbiology, 88, 20–34. 10.1111/mmi.12159Search in Google Scholar PubMed PubMed Central

Rai A.K., Kumar P., Saini S., Thakur C.P., Seth T., Marta D.K. 2016. Increased level of soluble adenosine deaminase in bone marrow of visceral leishmaniasis patients: an inverse relation with parasite load. Acta Parasitologica, 61, 645–649. 10.1515/ap-2016-0087Search in Google Scholar PubMed

Rizzo S.C., Eckel R.E. 1966. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. American Journal of Physiology, 211, 429–43610.1152/ajplegacy.1966.211.2.429Search in Google Scholar PubMed

Rosenberg H., Gerdes R.G., Chegwidden K. 1977. Two systems for the uptake of phosphate in Escherichia coli. Journal of Bacteriology, 131, 505–51110.1128/jb.131.2.505-511.1977Search in Google Scholar PubMed PubMed Central

Roy A., Kucukural A., Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738. 10.1038/nprot.2010.5Search in Google Scholar PubMed PubMed Central

Russo-Abrahao T., Alves-Bezerra M., Majerowicz D., Freitas-Mesquita A. L., Dick C. F., Gondim K. C., Meyer-Fernandes J. R. 2013. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration. Biochimica et Biophysica Acta, 1830, 2683–268910.1016/j.bbagen.2012.11.017Search in Google Scholar PubMed

Russo-Abrahao T., Koeller C.M., Steinmann M.E., Silva-Rito S., Marins-Lucena T., Alves-Bezerra M., et al. 2017. H+ dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. Journal of Bioenergetics and Biomembranes, 49, 183–194. 10.1007/s10863-017-9695-ySearch in Google Scholar PubMed

Sacci J.B. Jr., Campbell T. A., Gottlieb M. 1990. Leishmania donovani: regulated changes in the level of expression of the surface 3’-nucleotidase/nuclease. Experimental Parasitology, 71, 158–16810.1016/0014-4894(90)90018-8Search in Google Scholar PubMed

Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425Search in Google Scholar

Saliba K.J., Martin R.E., Broer A., Henry R.I., McCarthy C.S., Downie M.J., Allen R.J., Mullin K. ., McFadden G.I., Broer S., Kirk K. 2006. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature, 443, 582–585. 10.1038/nature05149Search in Google Scholar PubMed

Samira A., Philippe L. 2017. In vitro effects of purine and pyrimidine analogues on Leishmania donovani and Leishmania infantum promastigotes and intracellular amastigotes. Acta Parasitologica, 62, 582–588. 10.1515/ap-2017-0070Search in Google Scholar PubMed

Schmittgen T. D., Livak K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–110810.1038/nprot.2008.73Search in Google Scholar PubMed

Tasaki Y., Kamiya Y., Azwan A., Hara T., Joh T. 2002. Gene expression during Pi deficiency in Pholiota nameko: accumulation of mRNAs for two transporters. Bioscience, Biotechnology, and Biochemistry, 66, 790–800. 10.1271/bbb.66.790Search in Google Scholar PubMed

Tiwari P., Verma P., Kureel A. K., Saini S., Rai A. K. 2016. Pi inhibits intracellular accumulation of methylglyoxal in promastigote form of L. donovani. Molecular and Biochemical Parasitology, 207, 89–95. 10.1016/j.molbiopara.2016.06.005Search in Google Scholar PubMed

Tsirigos K. D., Peters C., Shu N., Kall L., Elofsson A. 2015. The TOPCONS web server for combined membrane protein topology and signal peptide prediction. Nucleic Acids Research, 43, W401–W407. 10.1093/nar/gkv485Search in Google Scholar PubMed PubMed Central

Tyler P., Sudhandiran G., Hobbs S. B., Seyfang A. 2004. Substrate specificity of the Leishmania donovani myo-inositol transporter: critical role of inositol C-2, C-3 and C-5 hydroxyl groups. Molecular & Biochemical Parasitology 135, 133–141. 10.1016/j.molbiopara.2004.01.015Search in Google Scholar PubMed

Versaw W. K., Metzenberg R. L. 1995. Repressible cation-phosphate symporters in Neurospora crassa. Proceedings of the National Academy of Sciences, 92, 3884–388710.1073/pnas.92.9.3884Search in Google Scholar PubMed PubMed Central

Vieira D. P., Paletta-Silva R., Saraiva E. M., Lopes A. H., Meyer-Fernandes J. R. 2011. Leishmania chagasi: an ecto-3’-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite-macrophage interaction. Experimental Parasitology, 127, 702–707. 10.1016/j.exp-para.2010.11.003Search in Google Scholar PubMed

Vieira B.R., Gomes-Vieira A.L., Carvalho-Kelly L.F., Russo A.T., Meyer Frenandes J.R. 2017. The biochemcial chacracterization of two phosphate transport system in Phytomonas serpens. Experimental Parasitology, 173, 1–8. 10.1016/j.exppara.2016.12.007Search in Google Scholar PubMed

Wallner B., Elofsson A. 2003. Can correct protein models be identified? Protein Science, 12, 1073–1086. 10.1110/ps.0236803Search in Google Scholar PubMed PubMed Central

Ward J. J., Sodhi J. S., McGuffin L. J., Buxton B. F., Jones D. T. 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645. 10.1016/j.jmb.2004.02.002Search in Google Scholar PubMed

Ward J. J., McGuffin L. J., Bryson K., Buxton B. F., Jones D. T. 2004. The DISOPRED server for the prediction of protein disorder. Bioinformatics, 20, 2138–2139. 10.1093/bioinformatics/bth195Search in Google Scholar PubMed

Wass M. N., Kelley L. A., Sternberg M. J. 2010. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38, W476–473. 10.1093/nar/gkq406Search in Google Scholar PubMed PubMed Central

WHO 2015. Kala-Azar elimination programme: report of a WHO consultation of partners, Geneva, Switzerland, 10–11 February 2015Search in Google Scholar

Willsky G. R., Bennett R. L., Malamy M. H. 1973. Inorganic Phosphate Transport in Escherichia coli: Involvement of Two Genes Which Play a Role in Alkaline Phosphatase Regulation. Journal of Bacteriology 113, 529–53910.1128/jb.113.2.529-539.1973Search in Google Scholar PubMed PubMed Central

Willsky G. R., Malamy M. H. 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. Journal of Bacteriology, 144, 356–36510.1128/jb.144.1.356-365.1980Search in Google Scholar PubMed PubMed Central

Yang J., Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43, 174–181. 10.1093/nar/gkv342Search in Google Scholar PubMed PubMed Central

Zhang K., Hsu F. F., Scott D. A., Docampo R., Turk J., Beverley S. M. 2005. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Molecular Microbiology, 55, 1566–1578. 10.1111/j.1365-2958.2005.04493.xSearch in Google Scholar PubMed PubMed Central

Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. 10.1186/1471-2105-9-40Search in Google Scholar PubMed PubMed Central

Zuckerkandl E., Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins, 97–166. 10.1016/B978-1-4832-2734-4.50017-6Search in Google Scholar

Received: 2017-6-16
Revised: 2017-10-7
Accepted: 2017-10-12
Published Online: 2018-1-17
Published in Print: 2018-3-26

© 2018 W. Stefański Institute of Parasitology, PAS