Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 13, 2018

Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region

Raimundo Rosemiro Jesus Baia, Alexandro Cezar Florentino, Luís Maurício Abdon Silva and Marcos Tavares-Dias
From the journal Acta Parasitologica


This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus. A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.


M. Tavares-Dias was granted (# 303013/2015-0) a Research Fellowship from the National Council for Scientific and Technological Development (CNPq, Brazil). The authors thank Dr. Juan T. Timi, of the Universidad Nacional de Mar del Plata (Argentina), for his critical review of the manuscript prior to submission.


Albert J.S., Reis R.E. 2011. Introduction to Neotropical freshwaters. In: Albert J.S., Reis R.E. (Eds). Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp. 3–1910.1525/california/9780520268685.003.0001Search in Google Scholar

Alcântara N.M., Tavares-Dias, M. 2015. Structure of the parasite communities in two Erythrinidae fish from Amazon River system (Brazil). Brazilian Journal of Veterinary Parasitology,24, 183–19010.1590/S1984-29612015039Search in Google Scholar PubMed

Beevi M.R., Radhakrishnan S. 2012. Community ecology of the metazoan parasites of freshwater fishes of Kerala. Journal of Parasitic Diseases, 36, 184–19610.1007/s12639-012-0101-8Search in Google Scholar PubMed PubMed Central

Bellay S., Oliveira E.F., Almeida-Neto M., Lima-Junior D.P., Takemoto R. M., Luque J.L. 2013. Developmental stage of parasites influences the structure of fish-parasite networks. Plos One, 8, e75710. 10.1371/journal.pone.0075710Search in Google Scholar PubMed PubMed Central

Bellay S., Oliveira E.F., Almeida-Neto M., Abdallah V.D., Azevedo R.K., Takemoto R. M., Luque J.L. 2015. The patterns of organization and structure of interactions in a fish-parasite network of a Neotropical river. International Journal for Parasitology, 45, 549–557. in Google Scholar PubMed

Bittencourt L.S., Pinheiro D.A., Cárdenas M.Q., Fernandes B.M., Tavares-Dias M. 2014a. Parasites of native Cichlidae populations and invasive Oreochromis niloticus (Linnaeus, 1758) in tributary of Amazonas River (Brazil). Brazilian Journal of Veterinary Parasitology, 23, 44–5410.1590/S1984-29612014006Search in Google Scholar PubMed

Bittencourt L.S., Silva U.R.L., Silva L.M.A. Tavares-Dias M. 2014b. Impact of the invasion from Nile tilapia on natives Cichlidae species in tributary of Amazonas River, Brazil. Biota Amazônia, 4, 88–9410.18561/2179-5746/biotaamazonia.v4n3p88-94Search in Google Scholar

Bush A.O., Lafferty K.D., Lotz J.M., Shostak W. 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology, 83, 575–58310.2307/3284227Search in Google Scholar

Choudhury A., Dick T.A. 2000. Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. Journal of Biogeography, 27, 935–95610.1046/j.1365-2699.2000.00450.xSearch in Google Scholar

Dormann C.F., Fruend J., Bluethgen N., Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–2410.2174/1874213000902010007Search in Google Scholar

Froese R., Pauly D., Editors. 2017. Fish Base. World Wide Web electronic publication., version (06/2017)Search in Google Scholar

Garcez R.C.S., Souza, L.A., Frutuoso M.E., Freitas C.E.C. 2017. Seasonal dynamic of Amazonian small-scale fisheries is dictated by the hydrologic pulse. Boletim do Instituto da Pesca, 43, 207–22110.20950/1678-2305.2017v43n2p207Search in Google Scholar

Guégan J.F., Lambert A., Lévêdque C., Combes C., Euzet L. 1992. Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia, 90, 197–204. 10.1007/BF00317176Search in Google Scholar PubMed

Grutter A.S. 1994. Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Marine Ecology Progress Series, 115, 21–3010.3354/meps115021Search in Google Scholar

Hammer O., Harper D.A.T., Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9Search in Google Scholar

Hoshino M.D.F.G., Neves L.R., Tavares-Dias M. 2016. Parasite communities of the predatory fish, Acestrorhynchus falcatus and Acestrorhynchus falcirostris, living in sympatry in Brazilian Amazon. Brazilian Journal of Veterinary Parasitology, 25, 207–216. in Google Scholar PubMed

Junk W.J. 2013. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquatic Sciences, 75, 113–13110.1007/s00027-012-0253-8Search in Google Scholar

Lafferty K.D., Allesina S., Arim M., Briggs C.J., De Leo G., Dobson A.P., et al. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters, 11, 533–546. 10.1111/j.1461-0248.2008.01174.xSearch in Google Scholar PubMed PubMed Central

Kennedy C.R. 1990. Helminth communities in freshwater fish: structured communities or stochastic assemblages? In: Esch G.W., Busch A.O, Aho J.M. (Eds) Parasite communities: patterns and processes. Chapman and Hall, pp. 131–15610.1007/978-94-009-0837-6_6Search in Google Scholar

Krebs C.J. 1999. Ecological methodology. Addison-Wesley Educational Publishers, pp. 581Search in Google Scholar

Kuris A.M., Blaustein, A.R., Alió J.J. 1980. Hosts as islands. American Naturalist, 116, 570–58610.1086/283647Search in Google Scholar

Luque J.L., Poulin R. 2007. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology, 134, 865–878.10.1017/S0031182007002272Search in Google Scholar PubMed

Luque J.L., Poulin R. 2008. Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology, 72, 189–204. 10.1111/j.1095-8649.2007.01695.xSearch in Google Scholar

Marcogliese D.J. 2002. Food webs and the transmission of parasites to marine fish. Parasitology, 124, 83–9910.1017/S003118200200149XSearch in Google Scholar

Marcogliese D.J., Cone D.K. 1997. Food webs: a plea for parasites. Trends in Ecology & Evolution, 12, 320–32510.1016/S0169-5347(97)01080-XSearch in Google Scholar PubMed

Oksanen J.F., Blanchet G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O‘Hara R. B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., and Wagner H. 2017. Vegan: Community Ecology Package. R Package version 2.4–3. in Google Scholar

Pérez-Ponce de León, Choudhury A. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography, 32, 645–65910.1111/j.1365-2699.2005.01218.xSearch in Google Scholar

Poulin R. 2001. Another look at the richness of helminth communities in tropical freshwater fishes. Journal of Biogeography, 28, 737–74310.1046/j.1365-2699.2001.00570.xSearch in Google Scholar

Poulin R. 2004a. Macroecological patterns of species richness in parasite assemblages. Basic Applied Ecology, 5, 423–43410.1016/j.baae.2004.08.003Search in Google Scholar

Poulin R. 2004b. Parasite species richness in New Zealand fishes: a grossly underestimated component of biodiversity? Diversity and Distributions, 10, 31–3710.1111/j.1472-4642.2004.00053.xSearch in Google Scholar

Poulin R., Leung T.L.F. 2011. Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia, 166, 731–738. 10.1007/s00442-011-1906-3Search in Google Scholar PubMed

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL in Google Scholar

Ruehle B.P., Herrmann K.K., Higgins, C.L. 2017. Helminth parasite assemblages in two cyprinids with different life history strategies. Aquatic Ecology, 51, 247–25610.1007/s10452-017-9614-7Search in Google Scholar

Valtonen E.T., Marcogliese D.J., Julkunen M. 2010. Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia, 162, 139–15210.1007/s00442-009-1451-5Search in Google Scholar PubMed

Salgado-Maldonado G., Novelo-Turcotte M.T., Caspeta-Mandujano J.M., Vazquez-Hurtado G., Quiroz-Martínez B., Mercado-Silva N., Favila M. 2016. Host specificity and the structure of helminth parasite communities of fishes in a Neotropical river in Mexico. Parasite, 23, 61. 10.1051/parasite/2016073Search in Google Scholar PubMed PubMed Central

Silva A.Q., Takiyama L.R., Costa-Neto S.V., Silveira O.F.M. 2009. Valoração ambiental das unidades fitoecológicas remanescentes da bacia hidrográfica do Igarapé Fortaleza. OLAMCiência & Tecnologia, 9, 354–384Search in Google Scholar

Takiyama L.R., Silva A.Q., Costa W.J.P., Nascimento H.S. 2004. Qualidade das águas das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 81–104.(In Portuguese)Search in Google Scholar

Takiyama L.R., (et al.). 2012. Projeto zoneamento ecológico econômico urbano das áreas de ressacas de Macapá e Santana, estado do Amapá: relatório técnico final. Luis Roberto Takiyama. Macapá: IEPA, pp. 84 (In Portuguese)Search in Google Scholar

Tavares-Dias M., Oliveira M.S.B., Gonçalves R.A., Silva L.M.A. 2014. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, 59, 158-164. 10.2478/s11686-014-0225-3Search in Google Scholar PubMed

Tavares-Dias M., Gonçalves R.A., Oliveira M.S.B., Neves L.R. 2017. Ecological aspects of the parasites in Cichlasoma bimaculatum (Cichlidae), ornamental fish from the Brazilian Amazon. Acta Biológica Colombiana, 22, 175–180. in Google Scholar

Thomaz D.O., Costa Neto S.V., Tostes L.C.L. 2004. Inventario florístico das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 1–22 (In Portuguese)Search in Google Scholar

Timi J.T., Rossin M.A., Alarcos A.J., Braicovich P.E., Cantatore D.M.P., Lanfranchi A.L. 2011. Fish trophic level and the +similarity of non-specific larval parasite assemblages. International Journal for Parasitology, 41, 309–316. 10.1016/j.ijpara.2010.10.002Search in Google Scholar PubMed

Walker JG, Hurford A, Cable J, Ellison AR, Price SJ, Cressler CE. 2017. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis. Philosophical Transactions of the Royal Society B, 372, 20160089. in Google Scholar PubMed PubMed Central

Zar J.H. 2010. Biostatistical analysis. 5th ed. Prentice Hall, New Jersey, pp. 944Search in Google Scholar

Received: 2017-11-13
Revised: 2018-1-18
Accepted: 2018-1-19
Published Online: 2018-4-13
Published in Print: 2018-6-26

© 2018 W. Stefański Institute of Parasitology, PAS

Scroll Up Arrow