Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 13, 2018

Observer design for monocular visual inertial SLAM

Beobachterentwurf für VISLAM
Geoff Fink, Mirko Franke, Alan F. Lynch and Klaus Röbenack


This paper examines the state estimation problem for unmanned aerial vehicles when commonly used positioning systems such as the global positioning system or indoor motion capture systems are unavailable. The proposed method uses inertial sensor measurements along with scaled position measurements from an onboard computer vision system which implements visual simultaneous localization and mapping. A state transformation puts the system into a linear time-varying form which simplifies observability analysis and allows for an observer design with sufficient conditions for convergence. The proposed design is validated by simulation.


Dieser Beitrag untersucht das Problem der Zustandsschätzung für unbemannte Fluggeräte, wenn Referenzsysteme wie das globale Positionsbestimmungssystem oder Multikamera basierte Systeme zur Bewegungserfassung nicht verfügbar sind. Der vorgestellte Ansatz nutzt Messwerte eines Inertialsensors in Verbindung mit einem auf visueller simultaner Lokalisierung und Kartierung basierenden internen Computer Vision System. Mittels Zustandstransformation wird das System in eine lineare zeitvariante Form überführt, welche die Beobachtbarkeitsanalyse vereinfacht und einen Beobachterentwurf mit hinreichenden Konvergenzbedingungen erlaubt. Der Entwurf wird mittels Simulation verifiziert.


1. B. D. O. Anderson and J. Moore, Time-varying feedback laws for decentralized control, IEEE Trans. Automat. Contr. 26 (1981), 1133–1139.10.1109/TAC.1981.1102770Search in Google Scholar

2. B. D. O. Anderson, R. R. Bitmead, C. R. Johnson Jr., P. V. Kokotovic, R. L. Kosut, I. M. Y. Mareels, L. Praly and B. D. Riedle, Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press, Cambridge, MA, USA, 1986.Search in Google Scholar

3. A. Concha, G. Loianna, V. Kumar and J. Civera, Visual-inertial direct SLAM, in: Proc. IEEE Int. Conf. on Robotics and Automation, Stockholm, Sweden, May 2016.10.1109/ICRA.2016.7487266Search in Google Scholar

4. P. Corke, J. Lobo and J. Dias, An introduction to inertial and visual sensing, Int. J. Robot. Res. 26 (2007), 519–535.10.1177/0278364907079279Search in Google Scholar

5. A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, MonoSLAM: Real-time single camera SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007), 1052–1067.10.1109/TPAMI.2007.1049Search in Google Scholar

6. J. Engel, J. Sturm and D. Cremers, Scale-aware navigation of a low-cost quadrocopter with a monocular camera, Robot. Auton. Syst. 62 (2014), 1646–1656, Special Issue on Visual Control of Mobile Robots.10.1016/j.robot.2014.03.012Search in Google Scholar

7. G. Fink, M. Franke, A. F. Lynch, K. Röbenack and B. Godbolt, Visual inertial SLAM: Application to unmanned aerial vehicles, IFAC-PapersOnLine 50(1) (2017), 1965–1970.10.1016/j.ifacol.2017.08.162Search in Google Scholar

8. G. Fink, M. Franke, A. F. Lynch, K. Röbenack and B. Godbolt, Observer design for visual inertial SLAM scale on a quadrotor UAV, in: Proc. IEEE Int. Conf. on Unmanned Aircraft Systems, pp. 830–839, Miami, FL, Jun. 2017.10.1109/ICUAS.2017.7991497Search in Google Scholar

9. F. Fraundorfer and D. Scaramuzza, Visual odometry: Part II: Matching, robustness, optimization, and applications, IEEE Robot. Autom. Mag. 19 (2012), 78–90.10.1109/MRA.2012.2182810Search in Google Scholar

10. J. Fuentes-Pacheco, J. Ruiz-Ascencio and J. M. Rendón-Mancha, Visual simultaneous localization and mapping: A survey, Artif. Intell. Rev. 43 (2015), 55–81.10.1007/s10462-012-9365-8Search in Google Scholar

11. R. Hermann and A. Krener, Nonlinear controllability and observability, IEEE Trans. Automat. Contr. 22 (1977), 728–740.10.1109/TAC.1977.1101601Search in Google Scholar

12. R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME, Ser. D, J. Basic Eng. 83 (1961), 95–108.10.1115/1.3658902Search in Google Scholar

13. X. Li, Q. Zhang and H. Su, An adaptive observer for joint estimation of states and parameters in both state and output equations, Int. J. Adapt. Control Signal Process. 25 (2011), 831–842.10.1002/acs.1244Search in Google Scholar

14. A. I. Mourikis and S. I. Roumeliotis, A multi-state constraint Kalman filter for vision-aided inertial navigation, in: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3565–3572, Rome, Italy, Apr. 2007.10.1109/ROBOT.2007.364024Search in Google Scholar

15. K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Prentice Hall, Englewood Cliffs, NJ, 1989.Search in Google Scholar

16. B. Ni and Q. Zhang, Stability of the Kalman filter for continuous time output error systems, Syst. Control Lett. 94 (2016), 172–180.10.1016/j.sysconle.2016.06.006Search in Google Scholar

17. S. Puntanen and G. P. H. Styan, Historical Introduction: Issai Schur and the Early Development of the Schur Complement, The Schur Complement and Its Applications (F. Zhang, ed.), Springer US, Boston, MA, 2005, pp. 1–16.10.1007/0-387-24273-2_1Search in Google Scholar

18. D. Scaramuzza and F. Fraundorfer, Visual odometry: Part I: The first 30 years and fundamentals, IEEE Robot. Autom. Mag. 18 (2011), 80–92.10.1109/MRA.2011.943233Search in Google Scholar

19. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed., Springer-Verlag, New York, NY, 1998.10.1007/978-1-4612-0577-7Search in Google Scholar

20. S. M. Weiss, Vision Based Navigation for Micro Helicopters, Ph. D. thesis, ETH Zürich, Zürich, Switzerland, 2012.Search in Google Scholar

21. Q. Zhang, Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems, IEEE Trans. Automat. Contr. 47 (2002), 525–529.10.1109/9.989154Search in Google Scholar

Received: 2017-8-8
Accepted: 2018-1-8
Published Online: 2018-3-13
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston