Accessible Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag October 17, 2018

Model-based generation of run-time data collection systems exploiting AutomationML

Modellbasierte Generierung von Laufzeit-Datenerfassungssystemen aus AutomationML
Alexandra Mazak, Arndt Lüder, Sabine Wolny, Manuel Wimmer, Dietmar Winkler, Konstantin Kirchheim, Ronald Rosendahl, Hessamedin Bayanifar and Stefan Biffl

Abstract

Production system operators need support for collecting and pre-processing data on production systems consisting of several system components, as foundation for optimization and defect detection. Traditional approaches based on hard-coded programming of such run-time data collection systems take time and effort, and require both domain and technology knowledge. In this article, we introduce the AML-RTDC approach, which combines the strengths of AutomationML (AML) data modeling and model-driven engineering, to reduce the manual effort for realizing the run-time data collection (RTDC) system. We evaluate the feasibility of the AML-RTDC approach with a demonstration case about a lab-sized production system and a use case based on real-world requirements.

Zusammenfassung

Betreiber von Produktionsstätten benötigen Unterstützung beim Sammeln und Vorverarbeiten von Daten über die Laufzeit von Produktionssystemen, die aus mehreren Systemkomponenten bestehen. Hauptsächlich nutzen die Betreiber diese Informationen als Grundlage für die Optimierung der Anlagen und zur Fehlererkennung. Herkömmliche Ansätze von sogenannten Laufzeitdaten-Erhebungssystemen basieren zumeist auf hartcodierter Programmierung, die neben manuellem und zeitlichem Aufwand auch Domänenwissen und entsprechendes Technologie-Knowhow erfordern.

In diesem Artikel führen wir den AML-RTDC-Ansatz ein, der die Stärken der AutomationML Datenmodellierung mit der modellgetriebenen Systementwicklung kombiniert, um den manuellen und zeitlichen Aufwand beim Entwerfen eines Laufzeitdaten-Erhebungssystems zu minimieren. Wir evaluieren die Realisierbarkeit dieses Ansatzes anhand einer Fallstudie basierend auf einem Laborproduktionssystem und einem Anwendungsfall, der auf realen Anforderungen basiert.

Funding statement: This work has been supported by the following research funds and organizations: Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development, TU Wien research funds as well as the German Ministry for Economic Affairs and Energy within the PAICE program.

References

1. L. Berardinelli, S. Biffl, A. Lüder, E. Mätzler, T. Mayerhofer, M. Wimmer and S. Wolny. Cross-disciplinary engineering with AutomationML and SysML. Automatisierungstechnik, 64(4):253–269, 2016.Search in Google Scholar

2. J. Bezivin. On the unification power of models. Software & Systems Modeling, 4(2):171–188, 2005.10.1007/s10270-005-0079-0Search in Google Scholar

3. S. Biffl, A. Lüder and D. Gerhard. Multi-Disciplinary Engineering for Cyber-Physical Production Systems – Data Models and Software Solutions for Handling Complex Engineering Projects. Springer, 2017.Search in Google Scholar

4. M. Brambilla, J. Cabot and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan & Claypool, 2017.Search in Google Scholar

5. Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V. (BITKOM), Verband Deutscher Maschinen- und Anlagenbau e. V. (VDMA), Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (ZVEI). Umsetzungsstrategie Industrie 4.0. Ergebnisbericht der Plattform Industrie 4.0, 2015.Search in Google Scholar

6. P. S. Cowpertwait and A. V. Metcalfe. Introductory Time Series with R. Springer, 2009.Search in Google Scholar

7. DIN. DIN Spec 16592: Combining OPC Unified Architecture and Automation Markup Language. Beuth, 2016.Search in Google Scholar

8. T. Dunning and E. Friedmann. Practical Machine Learning: A New Look at Anomaly Detection. O’Reilly, 2014.Search in Google Scholar

9. T. Dunning and E. Friedmann. Time Series Databases: New Ways to Store and Access Data. O’Reilly, 2015.Search in Google Scholar

10. H. ElMaraghy. Changeable and Reconfigurable Manufacturing Systems. Springer, 2009.Search in Google Scholar

11. I. Hegny, M. Wenger and A. Zoitl. IEC 61499 based simulation framework for model-driven production systems development. In Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8. IEEE, 2010.Search in Google Scholar

12. International Electrotechnical Commission. IEC 62424 – Representation of process control engineering – Requests in P&I diagrams and data exchange between P&ID tools and PCE-CAE tools. www.iec.ch, 2008.Search in Google Scholar

13. International Electrotechnical Commission. IEC 62714 – Engineering data exchange format for use in industrial automation systems engineering- AutomationML. www.iec.ch, 2014.Search in Google Scholar

14. International Organization for Standardization. ISO/PAS 17506:2012 – Industrial automation systems and integration – COLLADA digital asset schema specification for 3D visualization of industrial data. www.iso.org, 2012.Search in Google Scholar

15. H. Kagermann, W. Wahlster and J. Helbig. Recommendations for implementing the strategic initiative INDUSTRIE 4.0 – Securing the future of German manufacturing industry. Acatech, 2013.Search in Google Scholar

16. J. Kinghorst, O. Geramifard, M. Luo, H. Chan, K. Yong, J. Folmer, M. Zou and B. Vogel-Heuser. Hidden Markov model-based predictive maintenance in semiconductor manufacturing: A genetic algorithm approach. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), pages 1260–1267. IEEE, 2017.Search in Google Scholar

17. Konstantin Kirchheim. Konzeptionierung einer AutomationML OPC UA Serverstruktur für die Integration in agentenbasierte Steuerungssysteme. Bachelor thesis, Otto-von-Guericke University, 2017.Search in Google Scholar

18. A. Lüder, M. Schleipen, N. Schmidt, J. Pfrommer and R. Henßen. One step towards an Industry 4.0 component. In 13th IEEE Conference on Automation Science and Engineering (CASE), pages 1268–1273. IEEE, 2017.Search in Google Scholar

19. A. Lüder and N. Schmidt. AutomationML in a Nutshell. 2015.Search in Google Scholar

20. W. Mahnke, S.-H. Leitner and M. Damm. OPC Unified Architecture. Springer, 2011.Search in Google Scholar

21. T. Mayerhofer, M. Wimmer, L. Berardinelli and R. Drath. A model-driven engineering workbench for caex supporting language customization and evolution. IEEE Transactions on Industrial Informatics, PP(99):1–11, 2017.Search in Google Scholar

22. A. Mazak and M. Wimmer. Towards Liquid Models: An Evolutionary Modeling Approach. In Proceedings of the 18th IEEE Conference on Business Informatics (CBI), pages 104–112. IEEE, 2016.Search in Google Scholar

23. A. Mazak, M. Wimmer and P. Patsuk-Boesch. Reverse engineering of production processes based on Markov chains. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), pages 680–686. IEEE, 2017.Search in Google Scholar

24. D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39(2):25–31, 2006.10.1109/MC.2006.58Search in Google Scholar

25. D. Schütz, C. Legat and B. Vogel-Heuser. MDE of manufacturing automation software – Integrating SysML and standard development tools. In Proceedings of the 12th IEEE International Conference on Industrial Informatics (INDIN), pages 267–273. IEEE, 2014.Search in Google Scholar

26. B. Vogel-Heuser, T. Bauernhansl and M. ten Hompel. Handbuch Industrie 4.0 – Produktion, Automatisierung und Logistik. Springer, 2015.Search in Google Scholar

27. V. Vyatkin. Software Engineering in Industrial Automation: State-of-the-Art. IEEE Transactions on Industrial Informatics, 9(3):1234–1249, 2013.10.1109/TII.2013.2258165Search in Google Scholar

Received: 2018-02-28
Accepted: 2018-07-06
Published Online: 2018-10-17
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston