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Abstract: Environment perception plays a significant role
in autonomous driving since all traffic participants in the
vehicle’s surroundingsmust be reliably recognized and lo-
calized in order to take any subsequent action. The main
goal of this paper is to present a neural network approach
for fusing camera images and LiDAR point clouds in or-
der to detect traffic participants in the vehicle’s surround-
ings more reliably. Our approach primarily addresses the
problem of sparse LiDAR data (point clouds of distant ob-
jects), where due to sparsity the point cloud based de-
tection might become ambiguous. In the proposed model
each 3Dpoint in the LiDARpoint cloud is augmentedby se-
mantically strong image features allowing us to inject ad-
ditional information for the network to learn from. Experi-
mental results show that ourmethod increases thenumber
of correctly detected 3D bounding boxes in sparse point
clouds by at least 13–21% and thus raw sensor fusion is
validated as a viable approach for enhancing autonomous
driving safety in difficult sensory conditions.

Keywords: neural networks, sensor fusion, autonomous
driving, LiDAR, sparse point cloud

Zusammenfassung: Die Wahrnehmung der Umgebung
spielt beim autonomen Fahren eine wichtige Rolle, da al-
le Verkehrsteilnehmer in der Umgebung des Fahrzeugs zu-
verlässig erkannt und lokalisiert werden müssen, um wei-
tere Maßnahmen ergreifen zu können. Das Hauptziel die-
ses Artikels ist es, eine neuronale Netzwerk Methode zur
Integration von Kamerabildern und LiDAR-Punktwolken
vorzustellen, um Verkehrsteilnehmer in der Fahrzeugum-
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gebung zuverlässiger zu erkennen. Unser Ansatz befasst
sich hauptsächlich mit dem Problem spärlicher LiDAR-
Daten (Punktwolken entfernter Objekte), bei denen die
auf Punktwolken basierende Erkennung aufgrund der
Sparsamkeit möglicherweise mehrdeutig wird. Im vorge-
schlagenen Modell wird jeder 3D-Punkt in der LiDAR-
Punktwolke durch semantisch starkeBildmerkmale erwei-
tert, sodass wir zusätzliche Informationen anfügen kön-
nen, aus denen das Netzwerk lernen kann. Experimen-
telle Ergebnisse zeigen, dass unsere Methode die Anzahl
korrekt erkannter 3D-Begrenzungsrahmen in spärlichen
Punktwolken um mindestens 13–21% erhöht. Daher wird
die rohe Sensorfusion als praktikabler Ansatz zur Verbes-
serung der autonomen Fahrsicherheit unter schwierigen
sensorischen Bedingungen validiert.

Schlagwörter:NeuronaleNetze, Sensorfusion, autonomes
Fahren, LiDAR, spärliche Punktwolke

1 Introduction
Sensing and understanding vehicle surroundings is one of
the most crucial factors in autonomous driving, since any
subsequent action taken is strongly dependent on how the
scene is interpreted, what type of participants are present,
where they are located, what their intention is, etc. In or-
der to make self-driving safe and reliable all this informa-
tion must be extracted and more importantly must be ac-
curate. Any misdetected or misclassified object may harm
the self-driving safety. One way to increase the reliability
of perception is the utilization of various types of sensors.
In heterogeneous sensor setups the overall joint sensing
capability of the self-driving vehicle covers a wider range
of weather and traffic conditions in general, furthermore
the sensor redundancy is also a significant advantage in
case of sensor failure, damage, or obstruction.

The benefits of redundant and especially multi-modal
sensor setups come at the cost of a different challenge,
namely how multi-sensor data might be fused in order to
detect and recognize traffic participants reliably. The two
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main approaches to multi-sensor integration are object-
level and low-level (raw) data fusion. While in case of ob-
ject level fusion the individual sensor signals are inde-
pendently processed, yielding usually an object list for
each individual sensor as described by Hall and Llinas [3]
and Kim et al. [5], in case of low-level fusion the detection
task benefits from low-level features of all sensors jointly.
In contrast to various high-level fusion approaches (e. g.,
track-to-track fusion in Kovacs et al. [6]), low-level fusion
and raw fusion have received somewhat less attention. We
believe it is likely that with purely high-level fusion we
are not leveraging the full range of inter-sensor synergies
present in most real-world setups, and are therefore not
achieving a perception performance otherwise possible.

In this work we explore the possible advantages of
lower level data fusion. Due to different low-level repre-
sentations of data and their different levels of spatial and
temporal sparsity (coming fromdifferent types of sensors),
joint data representationmethods are essential. An impor-
tant consideration here is how to fuse data without sub-
stantial information loss or artificial data imputation.

Let us consider the case of integrating a camera im-
age and a sparse LiDARpoint cloud in anRGBD (red-green-
blue-depth) matrix. By reprojecting all point cloud points
onto the camera image there might be many pixels with
one or more reprojected 3D points but at the same time
there would certainly also be many pixels with no repro-
jected 3D points at all. Also, certain 3D points relevant to
the detection might be reprojected just outside the bound-
aries of the image raster. How can the two types of data
be jointly represented in this particular case without in-
formation loss or artificial injection? Simple oversampling
and interpolation techniques are clearly not adequate in
this regard, as they would necessarily introduce an artifi-
cial and highly inaccurate depth model into our calcula-
tions.

Instead of fusing camera and LiDAR data in the im-
age plane, the bird’s eye view (BEV) plane, or in an arbi-
trarily voxelized 3D space, we choose to avoid introducing
artificial structures and assumptions. Therefore we train
our networks on an augmented version of the original,
rawpoint cloud representation that lacks spatial structure.
Our contribution lies in the novel method of point cloud
augmentation that accomplishes ameaningful data fusion
between camera and LiDAR features and allows a much
closer degree of sensor integration than previous point
cloud based approaches.

Our results show that it is possible to achievemore ac-
curate and more reliable perception by utilizing appropri-
ate methods of data fusion and thus leveraging the syner-
gies hidden in the statistical association between streams

of data provided by multiple sensors that simultaneously
measure the same environment. In particular we achieve
a tangible 13–21% increase in the number of correct detec-
tions in sparse point clouds. The practical significance of
our result lies in the possibility of more reliably detecting
distant traffic participants or obstacles and thus achieving
a higher level of safety for autonomous driving.

2 Related work
In the following section we present a brief overview of
some relevant state of the art results achieved in 3D object
detection for autonomous driving (trained, validated and
tested on the KITTI dataset1).

Ku et al. [7] propose an aggregate view object detec-
tion network (AVOD) for autonomous driving scenarios.
The authors use LiDAR point clouds and RGB images to
generate features that are shared by two subnetworks. In
case of LiDARdata a six channel bird’s eye view (BEV)map
is considered. Liang et al. [9] also exploit both LiDAR and
cameras. With the help of a so called “continuous fusion
layer” a dense BEV feature map is created and fused with
the BEV feature map extracted from LiDAR. Although the
BEV map is a convenient way to overcome the representa-
tion related differences of camera image and LiDAR point
clouds, the LiDAR data is not fully utilized.

In this work we employ the PointNet neural network
architecturewhichwas introduced by Qi et al. [13] andwas
purpose-made for processing unstructured collections of
data points. Previous work has already shown this archi-
tecture to be a capable alternative for 3D detection of traf-
fic participants, but to the best of our knowledge we are
the first to demonstrate the low-level sensor fusion and its
benefits that become available in this setup.

A straightforward, early application of PointNet is
F-PointNet which is basically a two-stage 3D detector pro-
posed by Qi et al. [12] and evaluated on the KITTI dataset.
In the first stage the RGB camera image is processed by an
arbitrary object detector that determines the 2D detection
boxes and the corresponding object types. In the second
stage each 2Dbox is used to forma 3Dbounding frustum in
order to reduce the point cloud to the 3D points of interest
only. The set of points falling into the frustum is then fur-
ther processed by two PointNet networks in order to estab-
lish the 3D bounding box coordinates (position, size and
heading). It is worth noting that although this setup relies

1 For further information, seeGeiger, Lenz andUrtasun [2] andGeiger
et al. [1].
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on both camera and LiDAR data, the fusion of the inputs
is rather high-level and loose, as the 3D LiDAR points are
combined with only the 2D box coordinates and the ob-
ject type prediction, but not the detailed pixel-level infor-
mation available from the RGB image. Another PointNet-
based design is given by Wang and Jia [16] who also use
a 2D detector in the first stage, but in the second stage
they work with a sequence of frustums instead of a sin-
gle frustum, each one yielding a single embedding vec-
tor via a PointNet. Appropriate concatenation of these vec-
tors forms a feature map from which the final prediction
is derived by a 2D convolution followed by a classification
and regression head. Again, the camera image contributes
only the 2D bounding box, but no low-level features. Our
work differs from both above mentioned frustum-based
approaches in that we recognize and pursue the possibil-
ity of deepening the level of fusion in order to fully exploit
the benefits of inter-sensor synergies.

Xu, Anguelov and Jain’s [17] model is also based on
the PointNet architecture and thus able to handle unor-
ganized raw point cloud data. They combine point cloud
features learned by a PointNet with high-level features –
extracted by a ResNet2 based CNN – that globally describe
the 2D window containing the object. The authors utilized
the image feature vector taken from the semantically high-
est level of ResNet (1×1×2048 in shape) and have extended
each point cloud data point with the same global descrip-
tor. The data augmentation they employ thus describes the
object as a whole: their approach differs from ours in that
they do not extract the local characteristics of the object.
UnlikeXuet al.,weassign local and specific image features
to the corresponding LiDAR points.

PointNet has proven to be apopular andquite success-
ful design, with several PointNet-based architectures re-
peatedly achieving top-10 status on the KITTI 3D object de-
tection benchmark.3 Besides the three already described
approaches, we would like to mention three further
PointNet-based architectures that achieve good results, al-
beit working with a single sensor (LiDAR) only. Zhou and
Tuzel [18] break up the point cloud into voxels, each non-
empty voxel is then represented by a fixed-length vector
via a PointNet. A subsequent sparse 3D convolution and a
region proposal network convert this intermediate repre-
sentation into the final 3D bounding box predictions. Shi,
Wang and Li [15] perform a foreground/background seg-
mentation first, and then create 3D box proposals for each

2 For details on ResNet architecture, consult He et al. [4].
3 For benchmark results, see: http://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=3d

of the foreground points, which are then later refined into
the final predictions. Lang et al. [8] learn a pillar-wise fea-
ture representation for the point cloud, which then only
has to be processed by a 2D convolution, resulting in sig-
nificant inference speed-up without losing precision. It is
possible that these and similar LiDAR-only PointNet archi-
tectures could benefit the most from integrating camera
information the way we propose in this paper. Of course,
practical feasibility with regards to run time would have
to be investigated as the inclusion of a second information
source is bound to increase overall computational com-
plexity. Since we demonstrate tangible advantages of our
approach on distant objects only, it could evenmake sense
to only partially augment the point cloud by exclusively fo-
cusingondistant regionsof interest –whichwouldusually
contain far less points than the closer regions. Although
not an immediate concern in this paper, these kinds of
questions could be explored in further studies.

3 Proposed architecture

3.1 Problem definition

Our goal is to enhance environment perception and au-
tonomous driving safety by utilizing raw image data and
LiDAR point clouds jointly without significant informa-
tion loss, favoring the direct processing of unorganized
LiDARpoint clouds instead of relying on birds eye view im-
ages or other projections or voxelizations that cause data
degradation. The PointNet architecture described in Sec-
tion 2 seems to be a promising and popular design for han-
dling unorganized point cloud data by deep neural net-
work architectures directly – the questionwe try to answer
is whether a low-level fusion is viable in such a setup.

The primary use-case we focus on is 3D object de-
tection in sparse LiDAR point clouds corresponding to a
multi-sensor autonomous driving scenario with distant
traffic participants.

In order to be able to argue about sparse point clouds
and distant objects, we have to define what we mean by
those words. In general, we will consider point clouds
that fall into an object’s frustum and that consist of 8 or
fewer points sparse. The vehicle-object distance that cor-
responds to a sparse point cloud is dependent on both the
object and the LiDAR type. We will consider two main ob-
ject types and three LiDAR types for this discussion. The
two ideal object types considered are the single-row (squat,
i. e., vehicle-like) and the two-row (tall, i. e., pedestrian-
like) object configuration. A vehicle-like object’s bound-

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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Table 1: Object distances.

Sensor 64-channel LiDAR 32-channel LiDAR 16-channel LiDAR

Vertical resolution 0.43° 1.29° 2.00°
Horizontal resolution 0.08° 0.24° 0.37°
Distant vehicle 213m 71m 46m
Distant pedestrian 227m 76m 49m

ing box is assumed to be 1.6m high and 2.56m wide and
the pedestrian-like object’s bounding box is assumed to be
1.7m high and 0.68m wide. If we consider a 2D grid made
up of several (16, 32 or 64) horizontal LiDAR scans pro-
jected onto the camera plane, we will assume the vehicle-
like object’s bounding box spans 1×8 cells and is expected
to contain 8 points in a single horizontal row while the
pedestrian-like object will span 2 × 4 cells containing 8
points in two rows. Note that the horizontal resolution of
the LiDAR grid is much higher than the vertical: in this
casewewill assume the azimuth (horizontal resolutionan-
gle) of the devices is always 1

5.375 -th of the vertical resolu-
tion angle. According to our working hypotheses it is easy
to calculate that distant objects resulting in sparse point
clouds will typically occur starting at distances between
46 and 213m, depending on LiDAR device, as can be seen
in Table 1.

A depiction of LiDAR points on a vehicle-like object is
given in Figure 1. It can be seen that determining the 3D
bounding box based only on the points’ 3D coordinates
is not a trivial task even if the type of object is known in
advance. The intuition behind our method is that the 3D
bounding box estimation might become easier if we re-
ceive some additional information about the LiDARpoints.
Besides coordinates, it would also seem helpful to know
certain additional semantic properties of a detected point:
e. g., does it belong to a front bumper, a windshield, a tire,
a leg, a head, etc. We suspect that the camera image, and
in particular certain mid-level, localized image features
from a 2D detector might contain the required informa-
tion.

3.2 Main contribution

Compared with other PointNet-based approaches, our
work is unique in that it considerably deepens the level of
integration between the two primary sensors, while also
demonstrating the thus attainable performance benefits
– especially in the case of sparse point clouds. The ap-
proach proposed in this paper extends and modifies the
F-PointNet model by assigning local – yet semantically

Figure 1: A 1.6 × 2.56m vehicle-like bounding box with eight LiDAR
points that fall into the frustum and a silhouette of a car in the back-
ground for reference. The image depicts a distant vehicle at 71m
detected using a 32-channel LiDAR.

strong – image features from high resolution feature maps
to each point in the LiDAR point cloud (for details refer to
Section 3.3).

Ourmain contributions in this papermight be summa-
rized as follows:
1. We augment each 3D raw LiDAR point with local

features acquired from high resolution semantically
strong image feature maps. Here we utilize the advan-
tages offered by feature pyramid networks (FPNs) in
order to acquire semantically strong feature maps at
different scales.

2. We connect the augmented input to both the segmen-
tation as well as the bounding box estimation part of
the F-PointNet architecture. According to our exper-
iments, this setup contributes to an improved accu-
racy.

3. We modify the internal structure of F-PointNet by in-
creasing the filter depths for both segmentation and
bounding box estimation subnetworks in order to ex-
pand the models’ capacities in line with the increase
of the input dimensions.

4. We show that this kind of augmentation benefits 3D
detection in sparse point clouds. It appears that se-
mantically strong local information about the 3Dpoint
contributes to an increased certainty in segmentation
and 3D bounding box estimation. We have performed
various experiments with sparse point clouds taken
from the KITTI dataset in order to show that augmen-
tation helps to increase the 3D detection accuracy.
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Figure 2: The proposed LIDAR-Camera fusion architecture. The point cloud augmentation block consists of a feature extractor that functions
as indicated by the dashed lines.

3.3 Developed model

The overall model consists of three main parts, namely
– our custom-trained 2D detector network;
– the proposed point cloud augmentation block (see

Fig. 2) which constitutes the main contribution of this
paper;

– and finally the segmentation block and the bound-
ing box estimation block: both parts correspond to the
original F-PointNet design but had to be appropriately
modified to accommodate the new setup.

The first stage of data processing is to identify the traffic
participant objects anddetermine their 2Dboundingboxes
in the camera image, based on which the bounding 3D
frustumwill be established for eachobject.Weuse a 2Dob-
ject detector which we have specifically trained for traffic
participant detection. In particular, we have repurposed a
Tiny Yolo3 [14] model that was pre-trained on the COCO
dataset [11]. We conducted transfer learning for 20 epochs
on the KITTI dataset aiming for more accurate Car, Pedes-
trian and Cyclist detection only. The training was done
with the first half of the network’s layers frozen through-
out and the second half gradually opened up for training.
We also make use of the advantages given by a feature

pyramid design of the convolutions (FPN, Lin et al. [10])
in which high resolution semantically strong feature map
representations are produced.

Prior to being processed by the segmentation and box-
estimation PointNets, we expand each LiDAR point’s 3D
vector with semantically strong local image features taken
from the 2D feature maps produced by the 2D detector.
Given the calibration data of cameras as well as LiDAR
the 3D LiDAR points are projected onto the camera image
plane and the corresponding image feature vector is as-
signed to the 3D LiDAR point.

The reprojection of a 3D point to image coordinates
is performed as follows. Assume that the camera matri-
ces Pj = K(j)[R(j)C |t(j)C ] and the extrinsics [RL, tL] of the Li-
DAR wrt. the world frame are given. Here R(j)C and t(j)C de-
note the rotation and translation of the jth camera respec-
tively (wrt. the world frame), K(j) contains the intrinsics
of the jth camera. Each 3D LiDAR point is projected onto
the camera image plane of the second camera. Let the Li-
DAR point Xi be represented by a homogeneous 4-vector
[Xi,Yi, Zi, 1] in the world coordinate system, i = 1..N, where
N stands for the number of points in the point cloud
falling inside a given frustumdefined by the camera center
and the 2D detection window. Furthermore, let the image
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points xij stand for the projections of Xi in the jth cam-
era image given by a homogeneous 3-vector. By assum-
ing the pinhole camera model, xij is expressed as follows:
xij = K(j)[R(j)C |t(j)C ]Xi. Because the camera images have been
undistorted in advance in the pre-processing phase, radial
and tangential lens distortions are not considered here.

Next, for all Xi the first M image features are taken
from the 4th convolutional layer of the 2D detector. Al-
though the 4th convolutional layer is not the one with the
semantically strongest image features, it has a high reso-
lution. Opting for a different tradeoff between semantics
and resolution, features from other layers could have been
chosen instead. According to our results however, the 4th
layer contains features of appropriate semantic complex-
ity to demonstrate the advantage of our proposed fusion
method. The spatial resolution of the 4th layer is 8×higher
than the resolution of the semantically strongest feature
map. In particular, each pixel from the 4th layer map cor-
responds to a 16 × 16 px patch on the original image. In
order to assign features from the map to the individual re-
projected LiDAR points, the map is first scaled up to the
size of the original image.

Let us denote the tensor containing the semantically
strong image feature maps from our 2D detector by tensor
F of size W × H × K, where H and W correspond to map
height and width, respectively and K stands for the num-
ber of feature maps in the given layer. Let Fk denote the
feature map being at the kth position in F, where k ≤ K.

The task of the proposed augmentation block is to take
local image feature vectors corresponding to the image
projections of 3D LiDAR points (located inside the frustum
defined by the camera intrinsics and 2D bounding box of
the target) and assign them to the corresponding 3D point
in the LiDAR point cloud by concatenation. Let us denote
an augmented 3D point as:

Xaug
i = [Xi,Yi, Zi,F1[xij],F2[xij], ...,FM[xij]],

where 0 ≤ M ≤ K, Fk[xij] stands for a particular feature
located at ⌊xij⌉ in the kth feature map.4

The augmented 3D point list is connected to the input
of PointNet aswell as to the input of the TNet networks (see
Fig. 2) in the following form:

[[[[

[

X1 Y1 Z1 F1[x1j] ... FM[x1j]
X2 Y2 Z2 F1[x2j] ... FM[x2j]

XN YN ZN F1[xNj] ... FM[xNj]

]]]]

]

4 Instead of getting the feature from integer valued pixel coordinates
bilinear interpolation could have also been used.

4 Experiment setup and results

We performed a comparative study on the impact of the
proposed feature fusion upon precision scores versus the
baseline score of the same (F-PointNet based) architecture
without low-level fusion. The performance indicator used
for evaluation was average precision (AP) calculated as
defined in the official KITTI benchmark evaluation pack-
age, with a single difference. We performed our experi-
ments using RGB image and sparse LiDAR point cloud in-
puts as defined in Section 3.1. In order to be able to per-
form many measurements, we artificially made all point
clouds equally sparse by setting the sampling size param-
eter to 8 points per frustum. Note that the sparse sampling
is a deliberate deviation from the standard KITTI evalu-
ation method that makes the detection task much more
challenging: the baselineAPdecreases by an order ofmag-
nitude, signifying the difficulty of performing accurate 3D
bounding box estimation in sparse (distant) point clouds.

Due to the stochastic nature of neural network train-
ing we opted for Welch’s unequal variances t-test analy-
sis of the difference of the scores of the two approaches.
We trained 60 models altogether, 30 with the baseline
setup (group A) and 30 with our proposed low-level fu-
sion (group B). In our approach, we augmented the point
clouds’ 3 original channels [X,Y , Z]with 29 features taken
frommedium-resolution but semantically relevant feature
maps of our Tiny Yolo v3 2D detector. The 60 models were
trained independently of each other, and given the ran-
domization in weight initialization,5 batch ordering, data
augmentation and dropout, their performancemetrics can
also be regarded as independent random variables. Con-
sidering the large sample size the distribution of sample
means (and their differences) can be treated as Gaussian
due to the Central Limit Theorem. Therefore,Welch’s t-test
is applicable.

Our null hypothesis states that there is no differ-
ence upon applying our modification (H0 : μB − μA = 0).
The alternative hypothesis states that our modification
indeed raises the AP performance for a given task
(H1 : μB − μA > 0). We will set the significance level at 5%,
and the corresponding confidence interval will be con-
structed with a confidence level of 90%.

First we measured end-to-end performance of the sys-
tems and detected a statistically and practically signifi-
cant AP improvement of 0.93±0.69 percentage points (cor-
responding to 21% more correct detections) in the easy

5 Our setup uses the tensorflowdefault Xavier uniformweight initial-
izer.
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Table 2: 90% confidence intervals for achieved percentage point improvement in AP of camera and sparse LiDAR based 3D bounding box
detection.

Using Tiny Yolo v3 2D boxes 3D car detection AP
easy moderate hard

Baseline mean AP 4.40% 4.22% 3.89%
AP std 1.56% 1.42% 1.42%

Our low-level fusion mean AP 5.33% 4.78% 4.50%
AP std 1.65% 1.56% 1.56%

Improvement

90% CI center +0.93 +0.57 +0.61
90% CI delta ±0.69 ±0.64 ±0.64
P(TDOF ≥ t) 1.41% 7.38% 5.89%
Statistically significant yes no no
Relative improvement 21.2% 13.4% 15.8%

Table 3: 90% confidence intervals for achieved percentage point improvement in AP of camera and sparse LiDAR based 3D bounding box
detection when using an ideal (ground truth) 2D detector. The effects of our low-level fusion method are more pronounced.

Using ground truth 2D boxes 3D car detection AP
easy moderate hard

Baseline mean AP 6.47% 7.34% 6.97%
AP std 2.81% 2.49% 2.61%

Our low-level fusion mean AP 9.17% 8.93% 8.44%
AP std 2.20% 2.54% 2.59%

Improvement

90% CI center +2.70 +1.59 +1.47
90% CI delta ±1.09 ±1.09 ±1.12
P(TDOF ≥ t) 0.01% 0.87% 1.65%
Statistically significant yes yes yes
Relative improvement 41.8% 21.7% 21.0%

detection category6 when using low-level fusion. We also
found indication for the existence of a somewhat lesser
improvement of around 0.6 percentage points inmoderate
and hard cases at a 10% significance level. For details re-
fer to Table 2 and Figures 3 and 4. Since the power of our
test was calibrated to detect a 1 percentage point effect in
80%of the cases and a 0.5 point effect in 34%of the cases,
we had good reason to suspect that the improvements in
the medium and hard categories were indeed caused by
our modification and not by chance, and that we would
be committing a Type II error should we retain the null hy-
pothesis in these cases.

In order to confirm our suspicion (without training
and evaluating hundreds of networks) we repeated the ex-
periments using actual ground truth – instead of predicted
– 2D boxes in order to better isolate the effect of our modi-

6 TheKITTI 3DObject DetectionBenchmark evaluates three separate
AP scores for detecting objects that belong to one of three difficulty
classes (easy, moderate, hard) as described in http://www.cvlibs.net/
datasets/kitti/eval_object.php?obj_benchmark=3d

fication. Thus we excluded the performance variation due
to the 2D detection task of the first stage, which can be
regarded as a fairly independent problem. Our measure-
ments confirmed a very clear and statistically significant
improvement in all three difficulty classes: our method
achieved 1.47–2.70 percentage points higher AP scores cor-
responding to a performance increase of 21–42% in the
simplified task of correctly predicting a car’s 3D bound-
ing box given its sparse point frustum (not the whole point
cloud) and a corresponding RGB image. Detailed results
are available in Table 3 and Figures 3 and 4.

5 Summary

Our experiments indicate that low-level camera and
sparse LiDAR data fusion is a viable option for improving
perception in self-driving applications, where safety con-
siderations play a central role. In this paper we propose
a possible improvement for existing state of the art neu-
ral network architectures that consider camera and LiDAR

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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Figure 3: Results of the model evaluation for sparse 3D point clouds consisting of 8 points. The figures compare the average precision (AP
or equivalently mAP) scores of different models performing 3D bounding box detection for cars: (a) and (b) compare the performance of
the baseline setup (where the cloud is represented as [X , Y , Z] point records) with the proposed fusion setup (that augments the original[X , Y , Z] point coordinates with 29 semantically strong image features) for the whole end-to-end detection task including both the 2D detec-
tion and the 3D detection phases. Subfigures (c) and (d) make the same comparison focusing only on the 3D detection subtask (assuming
an ideally pre-solved 2D detection phase). (a) and (c) were measured using the same baseline model while (b) and (d) were produced using
the same fusion model.

Figure 4: Average precision (AP) scores for 30 baseline networks and 30 fusion-enabled networks measured for the whole end-to-end detec-
tion task including both the 2D detection and the 3D detection phases (a); and for the simplified 3D detection subtask, assuming an ideally
pre-solved 2D detection phase (b).

data only in separate, sequential or parallel phases of pro-
cessing. The overarching concept behind our method is
to use unstructured point cloud inputs that receive a se-
mantically meaningful augmentation from an RGB detec-
tor. This input is then used both in training and deploy-
ment of various deep learning algorithms – e. g., 3D object
detectors – that process raw signals from different types

of sensors jointly (and not separately). We achieve this by
projecting the LiDARpoint cloud onto the image plane and
augmenting the pointswith a corresponding image feature
vector taken from the internal layers of the 2D detector.

Our results show that the proposed low-level fusion
method can increase AP scores by at least 13–21% in
a sparse setting. We do not claim however that our fu-
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sion method notably improves detection performance in
a regular setting, nor that it is universally applicable in
all pointcloud-based neural architectures. A performance
comparison with the unmodified F-PointNet is sufficient
to show that the synergistic advantage of low-level fusion
not only exists, but can even be significant, and that our
setup is one way to access and employ this advantage in a
safety-critical application. In our current paper we aim to
show the existence of the fusion benefits, but not the uni-
versality. Performing quick comparisons with other popu-
lar orwell-performingnetworkdesignswouldn’t add to the
argument as any performance difference could never be
clearly attributed to our fusion method exclusively, since
the choice of architecture itself is also a defining factor. To
argue for universality we would have to custom-fit our fu-
sion onto several popular base designs and perform sim-
ilar ablation studies reevaluating them under sparse con-
ditions (this could be a topic for future research). A simple
theoretical argument for universality can be formulated by
noting that our fusion relies on a lossless augmentation of
the input (and corresponding expansion of the base net-
work), thus given enough training time and computational
capacity, every fusioned neural design should be able to
perform at least as good as the baseline design (by effec-
tively regressing to the baseline in the worst case).

According to our results, we have shown that more re-
liable detection of distant targets that are characterized by
very sparse LiDAR measurements is possible. In conclu-
sion, we have seen that introducing lower levels of fusion
into existing perception architectures for autonomous ve-
hicles can be beneficial in accomplishing specific safety-
critical tasks like the detection of distant or heavily ob-
scured objects. We intend to explore further possibilities
for improving existing designs and devising new, raw-
fusion specific architectures in the future in order to es-
tablish the extent of possible benefits of leveraging inter-
sensor synergies.

Funding: The project has been supported by the European
Union, co-financed by the European Social Fund EFOP-
3.6.2-16-2017-00002.
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