Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 2, 2020

Multi-agent systems to enable Industry 4.0

Multiagentensysteme für Industrie 4.0
Birgit Vogel-Heuser ORCID logo, Matthias Seitz ORCID logo, Luis Alberto Cruz Salazar ORCID logo, Felix Gehlhoff ORCID logo, Alaettin Dogan ORCID logo and Alexander Fay ORCID logo

Abstract

The discussion paper “I4.0 language: vocabulary, message structure and semantic interaction protocols of the I4.0 language”, published by the working group “Semantics and Interaction of Industry 4.0 Components” of the GMA, also known as UAG of the AG 1 of the platform Industry 4.0 (I4.0), presented a concept for the language between I4.0 components. The main conclusion is: The increasing networking and cooperation of components enable new forms of organization and control. A clear understanding of machine interactions paves self-organized and self-optimized value creation in I4.0. Agent-based systems are an option for the realization of such I4.0 architectures. Due to their features, software agents are particularly well suited for representing I4.0 components and enabling I4.0 interactions. Agents are not only able to understand the necessary machine languages, but also the essential mechanisms for self-organization and self-optimization in value creation. The paper focuses on I4.0 scenarios described by the Platform I4.0 that describes challenges for the industry towards its digital future and demonstrates how emerging challenges in the area of I4.0 can be met with the help of agent-based systems.

Zusammenfassung

Das Diskussionspapier „I4.0-Sprache: Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-Sprache”, veröffentlicht von der Arbeitsgruppe „Semantik und Interaktion von Industrie 4.0-Komponenten” der GMA, auch bekannt als UAG der AG 1 der Plattform Industrie 4.0 (I4.0), präsentierte ein Konzept für die Sprache zwischen I4.0-Komponenten. Die wichtigste Schlussfolgerung lautet: Die steigende Vernetzung und Kooperation von Komponenten ermöglicht neue Organisations- und Steuerungsformen. Selbstorganisierte und selbstoptimierte Wertschöpfung in I4.0 wird ermöglicht durch eine eindeutige Sprache der Maschinen. Agentensysteme sind dabei eine Möglichkeit zur Realisierung von I4.0-Architekturen. Aufgrund ihrer Eigenschaften eignen sich Softwareagenten besonders gut, um I4.0-Komponenten darzustellen und I4.0-Interaktionen zu ermöglichen. Agenten sind nicht nur in der Lage, die notwendigen Maschinensprachen zu verstehen, sondern auch die wesentlichen Mechanismen zur Selbstorganisation und Selbstoptimierung in der Wertschöpfung. Dieser Beitrag konzentriert sich auf I4.0-Szenarien und deren Herausforderungen an die Industrie und zeigt, wie diese mit Hilfe agentenbasierter Systeme bewältigt werden können.

References

1. ElMaraghy, H., AlGeddawy, T., Azab, A. & ElMaraghy, W. (2012). Change in Manufacturing – Research and Industrial Challenges. In Enabling Manufacturing Competitiveness and Economic Sustainability (pp. 2–9). doi:10.1007/978-3-642-23860-4_1.Search in Google Scholar

2. Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T. & Colombo, A. W. (2016). Smart Agents in Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 1086–1101. doi:10.1109/JPROC.2016.2521931.Search in Google Scholar

3. Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979–991. doi:10.1016/j.engappai.2008.09.005.Search in Google Scholar

4. Ribeiro, L. & Hochwallner, M. (2019). Time-related Constraints in Administration Shell Design within Cyber-physical Production Systems. In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN) (pp. 1564–1569). IEEE. doi:10.1109/INDIN41052.2019.8972192.Search in Google Scholar

5. Bauernhansl, T., ten Hompel, M. & Vogel-Heuser, B. (2014). Industrie 4.0 in Produktion, Automatisierung und Logistik. (T. Bauernhansl, M. ten Hompel & B. Vogel-Heuser, Eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik. Wiesbaden: Springer Fachmedien Wiesbaden. doi:10.1007/978-3-658-04682-8.Search in Google Scholar

6. Karnouskos, S., Ribeiro, L., Leitão, P., Luder, A. & Vogel-Heuser, B. (2019). Key directions for industrial agent based cyber-physical production systems. Proceedings – 2019 IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019. doi:10.1109/ICPHYS.2019.8780360.Search in Google Scholar

7. Leitão, P., Rodrigues, N., Barbosa, J., Turrin, C. & Pagani, A. (2015). Intelligent products: The grace experience. Control Engineering Practice, 42, 95–105. doi:10.1016/j.conengprac.2015.05.001.Search in Google Scholar

8. Plattform Industrie 4.0. (2016). Aspects of the Research Roadmap in Application Scenarios – Platform Industrie 4.0.Search in Google Scholar

9. Vogel-Heuser, B., Lee, J. & Leitão, P. (2015). Agents enabling cyber-physical production systems. At-Automatisierungstechnik. doi:10.1515/auto-2014-1153.Search in Google Scholar

10. Plattform Industrie 4.0. (2017a). Industrie 4.0 Plug-and-Produce for Adaptable Factories: Example Use Case Definition, Models, and Implementation. ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie e. V.Search in Google Scholar

11. Plattform Industrie 4.0. (2017b). Anwendungsszenario trifft Praxis: Auftragsgesteuerte Produktion eines individuellen Fahrradlenkers.Search in Google Scholar

12. DIN SPEC. (2016). 91345:2016-04 Reference Architecture Model Industrie 4.0 (RAMI4.0). https://www.beuth.de/en/technical-rule/din-spec-91345/250940128.Search in Google Scholar

13. Cruz S., L. A., Ryashentseva, D., Lüder, A. & Vogel-Heuser, B. (2019). Cyber-physical production systems architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns. International Journal of Advanced Manufacturing Technology, 105(9), 4005–4034. doi:10.1007/s00170-019-03800-4.Search in Google Scholar

14. Vialkowitsch, J., Schell, O., Willner, A., Vollmar, F., Schulz, T., Pethig, F., et al. (2018). I4.0-Sprache: Vokabular, Nachrichtenstruktur und semantische Inter-aktionsprotokolle der I4.0-Sprache. Berlin, Germany.Search in Google Scholar

15. Adolphs, P., Auer, S., Bedenbender, H., Billmann, M., Hankel, M., Heidel, R., et al. (2016). Structure of the Administration Shell Continuation of the Development of the Reference Model for the Industrie 4.0 Component. ZVEI and VDI. https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.pdf?__blob=publicationFile&v=7.Search in Google Scholar

16. Bedenbender, H., Bock, J., Boss, B., Diedrich, C., Garrels, K., Gatterburg, A. G., et al. (2019). Verwaltungsschale in der Praxis – Wie definiere ich Teilmodelle, beispielhafte Teilmodelle und Interaktion zwischen Verwaltungsschalen (Version 1.0). Berlin, Germany. https://www.bmwi.de.Search in Google Scholar

17. Plattform Industrie 4.0. (2018a). Part 1-The exchange of information between partners in the value chain of Industrie 4.0 (Version 1.0) in cooperation with SPECIFICATION Details of the Asset Administration Shell 16 | PREAMBLE (Vol. 0). www.bmwi.de.Search in Google Scholar

18. VDI/VDE. (2019a). 2193 Blatt 2. Sprache für I4.0-Komponenten – Interaktionsprotokoll für Ausschreibungsverfahren. Düsseldorf, Germany. https://www.vdi.de/richtlinien/details/vdivde-2193-blatt-2-sprache-fuer-i40-komponenten-interaktionsprotokoll-fuer-ausschreibungsverfahren.Search in Google Scholar

19. VDI/VDE. (2019b). 2193 Blatt 1. Sprache für I4.0-Komponenten – Struktur von Nachrichten. Düsseldorf, Germany. https://www.vdi.de/richtlinien/details/vdivde-2193-blatt-1-sprache-fuer-i40-komponenten-struktur-von-nachrichten.Search in Google Scholar

20. Plattform Industrie 4.0. (2018b). Details of the Asset Administration Shell – Part 1 – The exchange of information between partners in the value chain of Industrie 4.0 (Version 2.0). Berlin.Search in Google Scholar

21. VDI/VDE. (2019c). Agents for the realisation of Industrie 4.0. Düsseldorf, Germany. https://www.vdi.de/ueber-uns/presse/publikationen/details/agents-for-the-realisation-of-industry-40.Search in Google Scholar

22. Jennings, N. R., Sycara, K. & Wooldridge, M. (1998). A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems, 1(1), 7–38. doi:10.1023/A:1010090405266.Search in Google Scholar

23. VDI/VDE. (2012). 2653 Sheet 1:2010 Multi-agent systems in industrial automation – Fundamentals. https://www.beuth.de/en/technical-rule/vdi-vde-2653-blatt-1/282864028.Search in Google Scholar

24. Vogel-Heuser, B., Göhner, P. & Lüder, A. (2015). Agent-Based Control of Production Systems-and Its Architectural Challenges. In Industrial Agents: Emerging Applications of Software Agents in Industry. doi:10.1016/B978-0-12-800341-1.00009-7.Search in Google Scholar

25. Wooldridge, M. (1995). Conceptualising and Developing Agents. In Proceedings of the UNICOM Seminar on Agent Software (pp. 40–54).Search in Google Scholar

26. IEEE. (2005). Foundation for Intelligent Physical Agents. http://www.fipa.org/repository/index.html. Accessed 12 March 2019.Search in Google Scholar

27. Fay, A. & Wassermann, E. (2018). Sicherstellung von Interoperabilität. Atp Edition, 60(03), 34. doi:10.17560/atp.v58i03.1913.Search in Google Scholar

28. Theiss, S. & Kabitzsch, K. (2017). A Java software agent framework for hard real-time manufacturing control. At-Automatisierungstechnik, 65(11), 749–765. doi:10.1515/auto-2017-0036.Search in Google Scholar

29. Hoffmann, M., Thomas, P., Schutz, D., Vogel-Heuser, B., Meisen, T. & Jeschke, S. (2016). Semantic integration of multi-agent systems using an OPC UA information modeling approach. In IEEE International Conference on Industrial Informatics (INDIN). doi:10.1109/INDIN.2016.7819258.Search in Google Scholar

30. Bratman, M. (1987). Intention, Plans, and Practical Reason. Center for the Study of Language and Information.Search in Google Scholar

31. Acatech. (2013). Working Group Industrie 4.0: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. http://forschungsunion.de/pdf/industrie_4_0_umsetzungsempfehlungen.pdf.Search in Google Scholar

32. Löwen, U., Braune, A., Diesner, M., Huettemann, G., Klein, M., Thron, M., et al. (2016). Industrie 4.0 Components – Modeling Examples. doi:10.13140/RG.2.2.29092.68488.Search in Google Scholar

33. Böhm, B., Zeller, M., Vollmar, J., Weiß, S., Höfig, K., Malik, V., et al. (2018). Challenges in the engineering of adaptable and flexible industrial factories. In CEUR Workshop Proceedings.Search in Google Scholar

34. Großmann, D., Braun, M., Danzer, B. & Riedi, M. (2013). FDI – Field Device Integration.Search in Google Scholar

35. ZVEI Modular Automation WG. (2015). Module-Based Production in the Process Industry – Effects on Automation in the “Industrie 4.0” Environment. Frankfurt am Main, Germany. https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2015/maerz/White_Paper__Module-Based_Production_in_the_Process_Industry_-_Effects_on_Automation_in_the__Industrie_4.0__Environment/Module-Based_Production_in_the_Process_Industry-w.Search in Google Scholar

36. Jasperneite, J., Hinrichsen, S. & Niggemann, O. (2015). „Plug-and-Produce“ für Fertigungssysteme: Anwendungsfälle und Lösungsansätze. Informatik-Spektrum, 38(3), 183–190. doi:10.1007/s00287-015-0877-x.Search in Google Scholar

37. Cruz S., L. A., Mayer, F., Schütz, D. & Vogel-Heuser, B. (2018). Platform Independent Multi-Agent System for Robust Networks of Production Systems. IFAC-PapersOnLine, 51(11), 1261–1268. doi:10.1016/j.ifacol.2018.08.359.Search in Google Scholar

38. Caridi, M. & Cavalieri, S. (2004). Multi-agent systems in production planning and control: An overview. Production Planning and Control. doi:10.1080/09537280410001662556.Search in Google Scholar

39. Fazlirad, A. & Brennan, R. W. (2018). Multiagent Manufacturing Scheduling: An Updated State of the Art Review. In IEEE International Conference on Automation Science and Engineering (Vol. 2018-Augus, pp. 722–729). doi:10.1109/COASE.2018.8560576.Search in Google Scholar

40. Shen, W., Wang, L. & Hao, Q. (2006). Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews. doi:10.1109/TSMCC.2006.874022.Search in Google Scholar

41. Wong, T. N., Leung, C. W., Mak, K. L. & Fung, R. Y. K. (2006). Integrated process planning and scheduling/rescheduling—an agent-based approach. International Journal of Production Research, 44(18–19), 3627–3655. doi:10.1080/00207540600675801.Search in Google Scholar

42. Badr, I. (2011). Agent-based dynamic scheduling for flexible manufacturing systems. PhD thesis, Faculty 5: Computer Science, Electrical Engineering and Information Technology, University of Stuttgart.Search in Google Scholar

43. Wang, L. C. & Lin, S. K. (2009). A multi-agent based agile manufacturing planning and control system. Computers and Industrial Engineering, 57(2), 620–640. doi:10.1016/j.cie.2009.05.015.Search in Google Scholar

44. Vogel-Heuser, B. (2018). Softwareagenten in der Industrie 4.0 (Software Agents in Industry 4.0). (B. Vogel-Heuser, Ed.) (First). Berlin, Boston: De Gruyter. doi:10.1515/9783110527056.Search in Google Scholar

45. Aicher, T., Regulin, D. & Vogel-Heuser, B. (2018). 1. Dynamische Anbindung und automatische Konfiguration modularer Intralogistiksysteme mittels Agenten. In B. Vogel-Heuser (Ed.), Softwareagenten in der Industrie 4.0 (pp. 1–20). Berlin, Boston: De Gruyter. doi:10.1515/9783110527056-001.Search in Google Scholar

46. Faul, A., Beyer, T., Klein, M., Vögeli, D., Körner, R. & Weyrich, M. (2018). 5. Eine agentenbasierte Produktionsanlage am Beispiel eines Montageprozesses. Softwareagenten in der Industrie 4.0, pp. 89–108. doi:10.1515/9783110527056-005.Search in Google Scholar

47. Barbosa, J., Leitão, P., Adam, E. & Trentesaux, D. (2015). Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution. Computers in Industry, 66, 99–111. doi:10.1016/j.compind.2014.10.011.Search in Google Scholar

48. Leitão, P. & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24(5), 625–634. doi:10.1016/j.rcim.2007.09.005.Search in Google Scholar

49. Scholz-Reiter, B., Görges, M. & Philipp, T. (2009). Autonomously controlled production systems-Influence of autonomous control level on logistic performance. CIRP Annals – Manufacturing Technology, 58(1), 395–398. doi:10.1016/j.cirp.2009.03.011.Search in Google Scholar

50. Schreiber, S. & Fay, A. (2011). A reference system for the benchmarking of manufacturing control systems. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. doi:10.1109/ETFA.2011.6059203.Search in Google Scholar

51. Shukla, O. J., Soni, G., Kumar, R. & Sujil, V. (2018). An agent-based architecture for production scheduling in dynamic job-shop manufacturing system. At-Automatisierungstechnik, 66(6), 492–502. doi:10.1515/auto-2017-0119.Search in Google Scholar

52. Ghita, B., Agnes, L. & Xavier, D. (2018). Scheduling of production and maintenance activities using multi-agent systems. In IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. doi:10.1109/ETFA.2018.8502667.Search in Google Scholar

53. Cala, A., Ryashentseva, D. & Lüder, A. (2016). Modeling approach for a flexible manufacturing control system. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2016-Novem. doi:10.1109/ETFA.2016.7733745.Search in Google Scholar

54. Fischer, J., Marcos, M., Aicher, T. & Vogel-Heuser, B. (2017). Agentenbasierte Steuerung von Logistiksystemen. Atp Edition, 59(09), 16. doi:10.17560/atp.v59i09.1879.Search in Google Scholar

55. Rehberger, S., Spreiter, L. & Vogel-Heuser, B. (2017). An agent-based approach for dependable planning of production sequences in automated production systems. At-Automatisierungstechnik, 65(11), 766–778. doi:10.1515/auto-2017-0040.Search in Google Scholar

56. Regulin, D., Schutz, D., Aicher, T. & Vogel-Heuser, B. (2016). Model based design of knowledge bases in multi agent systems for enabling automatic reconfiguration capabilities of material flow modules. In IEEE International Conference on Automation Science and Engineering (Vol. 2016-Novem, pp. 133–140). doi:10.1109/COASE.2016.7743371.Search in Google Scholar

57. Badr, I., Schmitt, F. & Göhner, P. (2010). Integrating transportation scheduling with production scheduling for FMS: An agent-based approach. IEEE International Symposium on Industrial Electronics, pp. 3539–3544. doi:10.1109/ISIE.2010.5636632.Search in Google Scholar

Published Online: 2020-06-02
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow