Skip to content
Accessible Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag July 31, 2020

Power-HIL-Emulation der Dynamik einer Zug-Oberleitung mittels Echtzeit-Finite-Elemente-Modell in bewegten Koordinaten und modellprädiktiver Regelung

Power-HIL emulation of railway catenary dynamics with real-time finite element modeling in moving coordinates and model-predictive control
Alexander Schirrer, Guilherme Aschauer, Martin Kozek and Stefan Jakubek

Zusammenfassung

Diese Arbeit stellt eine innovative Power-Hardware-in-the-Loop-Entwicklungsplattform zur Prüfung von Bahnstromabnehmern vor. Ein echtzeitfähiges Finite-Elemente-Modell der Oberleitung wird formuliert, um deren relevante Dynamik um den Stromabnehmer-Kontakt effizient und genau darzustellen. Die Beschreibung in zugfesten, mitbewegten Koordinaten erlaubt es, das Rechengebiet deutlich zu kürzen. Unerwünschte Reflexionen hinauslaufender Wellenanteile an den Rändern werden durch ein leistungsfähiges Konzept zur Aufprägung absorbierenden Randverhaltens vermieden. Ein modellprädiktiver Impedanzregler emuliert die virtuelle Fahrleitungsdynamik auf dem realen Stromabnehmerprüfstand in Echtzeit.

Abstract

This work proposes an innovative Power-Hardware-in-the-Loop development platform for the testing of railway current collectors. A real-time-capable finite-element model of the catenary is formulated to describe its relevant dynamics around the pantograph contact efficiently and accurately. The description in train-fixed, moving coordinates allows the computational domain to be shortened considerably. Unwanted reflections of outgoing wave components at the edges are suppressed by an efficient absorbing boundary control approach. A model-predictive impedance controller emulates the virtual catenary dynamics on the real pantograph test bench in real time.

Funding source: Österreichische Forschungsförderungsgesellschaft

Award Identifier / Grant number: 841331

Funding statement: Diese Arbeit wurde teilweise durch die Österreichische Forschungsförderungsgesellschaft im Rahmen des geförderten Forschungsprojekts Nr. 841331 finanziert.

Literatur

1. J. Pombo and J. Ambrósio. Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains. Computers & Structures, 110:32–42, 2012.Search in Google Scholar

2. J. Ambrósio, J. Pombo and M. Pereira. Optimization of high-speed railway pantographs for improving pantograph-catenary contact. Theoretical and Applied Mechanics Letters, 3(1):013006, 2013.Search in Google Scholar

3. DIN EN 50367: Bahnanwendungen-Zusammenwirken der Systeme-Technische Kriterien für das Zusammenwirken Stromabnehmer und Oberleitung. Standard, Europäisches Komitee für elektrotechnische Normung – CENELC, 2012.Search in Google Scholar

4. M. Arnold and B. Simeon. Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Applied Numerical Mathematics, 34(4):345–362, 2000.Search in Google Scholar

5. F.G. Rauter, J. Pombo, J. Ambrosio, J. Chalansonnet, A. Bobillot and M.S. Pereira. Contact model for the pantograph-catenary interaction. Journal of System Design and Dynamics, 1(3):447–457, 2007.Search in Google Scholar

6. A. Beagles, D. Fletcher, M. Peffers, P. Mak and C. Lowe. Validation of a new model for railway overhead line dynamics. Proceedings of the ICE-Transport, 169(5):339–349, October 2016.Search in Google Scholar

7. S. Bruni, J. Ambrosio, A. Carnicero, Y.H. Cho, L. Finner, et al. The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3):412–435, 2015.Search in Google Scholar

8. T.X. Wu and M.J. Brennan. Active vibration control of a railway pantograph. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 211(2):117–130, 1997.Search in Google Scholar

9. A. Facchinetti, L. Gasparetto and S. Bruni. Real-time catenary models for the hardware-in-the-loop simulation of the pantograph/catenary interaction. Vehicle System Dynamics, 51(4):499–516, 2013.Search in Google Scholar

10. A. Schirrer, G. Aschauer, E. Talic, M. Kozek and S. Jakubek. Catenary emulation for hardware-in-the-loop pantograph testing with a model predictive energy-conserving control algorithm. Mechatronics, 41:17–28, 2017.Search in Google Scholar

11. G. Aschauer, A. Schirrer, M. Kozek and S. Jakubek. PHiL pantograph testing via FE-based catenary model with absorbing boundaries. Control Engineering Practice, 88:97–109, 2019.Search in Google Scholar

12. J. Ambrosio, J. Pombo, M. Pereira, P. Antunes and A. Mosca. A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains. Journal of Theoretical and Applied Mechanics, 50(3), 2012.Search in Google Scholar

13. G. Diana, F. Fossati and F. Resta. High speed railway: collecting pantographs active control and overhead lines diagnostic solutions. Vehicle System Dynamics, 30(1):69–84, 1998.Search in Google Scholar

14. D. Ritzberger, E. Talic and A. Schirrer. Efficient simulation of railway pantograph/catenary interaction using pantograph-fixed coordinates. IFAC-PapersOnLine, 48(1):61–66, 2015. 8th Vienna International Conference on Mathematical Modelling, MATHMOD 2015.Search in Google Scholar

15. K.-J. Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.Search in Google Scholar

16. G. Aschauer, A. Schirrer and S. Jakubek. Realtime-capable finite element model of railway catenary dynamics in moving coordinates. In 2016 IEEE Conference on Control Applications (CCA), pages 1078–1083, Sept 2016.Search in Google Scholar

17. G.-R. Liu and S.S. Quek. The finite element method: a practical course. Butterworth-Heinemann, 2nd edition, 2013.Search in Google Scholar

18. G. Aschauer, A. Schirrer, M. Kozek and S. Jakubek. Realtime-capable FE-based railway catenary emulation via pantograph test rig impedance control. IFAC-PapersOnLine, 50(1):8636–8641, 2017. 20th IFAC World Congress.Search in Google Scholar

19. D. Ritzberger, A. Schirrer and S. Jakubek. Absorbing boundary layer control for linear one-dimensional wave propagation problems. Journal of Vibration and Control, 24(6):1019–1031, 2018.Search in Google Scholar

20. P. Hagedorn and A. DasGupta. Vibrations and waves in continuous mechanical systems. John Wiley & Sons, 2007.Search in Google Scholar

21. A. Schirrer, G. Aschauer and S. Jakubek. Comparison of real-time models for high-fidelity hardware-in-the-loop catenary emulation in a high-dynamic pantograph test rig. Procedia Engineering, 199:3290–3295, 2017. X International Conference on Structural Dynamics, EURODYN 2017.Search in Google Scholar

22. H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock and M. Diehl. qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4):327–363, 2014.Search in Google Scholar

23. G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.Search in Google Scholar

Erhalten: 2020-01-31
Angenommen: 2020-06-16
Online erschienen: 2020-07-31
Erschienen im Druck: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston