Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag April 30, 2020

Maschinelles Lernen und Künstliche Intelligenz – Eine Revolution in der Automatisierungstechnik oder nur ein Hype?

Machine learning and artificial intelligence – A revolution in automation technology or only a hype?
Ralf Mikut

Funding source: German Research Association

Award Identifier / Grant number: MI 1315/5-2

Funding statement: Gefördert durch die Helmholtz-Gemeinschaft in der Initiative “Energie System 2050”, der Helmholtz Information and Data Science School – HIDSS4Health, Helmholtz AI sowie der Deutschen Forschungsgemeinschaft – Projekt MI 1315/5-2).


Die Sicht auf dieses Thema beruht auf den durchgeführten Projekten im Umfeld des Autors. Mein Dank für zahlreiche Diskussionen gilt den Kolleg*innen und Studierenden unseres Instituts (insbesondere Andreas Bartschat, Veit Hagenmeyer, Markus Reischl und Tim Scherr), dem Fachausschuss 5.14 Computational Intelligence, dem wissenschaftlichen Beirat der at-Automatisierungstechnik sowie Projektpartnern aus der Wissenschaft und Industrie (insbesondere Tim Pychynski).


1. Abadi, M.; Barham, P.; et al.: Tensorflow: A System for Large-scale Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), S. 265–283, 2016.Search in Google Scholar

2. Ardila, D.; Kiraly, A. P.; et al.: End-to-end Lung Cancer Screening with Three-dimensional Deep Learning on Low-dose Chest Computed Tomography. Nature Medicine 25 (2019) 6, S. 954–961.Search in Google Scholar

3. Bartschat, A.; Allgeier, S.; Bohn, S.; Scherr, T.; Blessing, D.; Reichert, K.-M.; Reischl, M.; Stachs, O.; Koehler, B.; Mikut, R.: Digitale Bildverarbeitung und Tiefe Neuronale Netze in der Augenheilkunde–aktuelle Trends. Klinische Monatsblätter für Augenheilkunde 236 (2019) 12, S. 1399–1406.Search in Google Scholar

4. Bartschat, A.; Reischl, M.; Mikut, R.: Data Mining Tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9 (2019) 4, e1309.Search in Google Scholar

5. Böhland, M.; Doneit, W.; Gröll, L.; Mikut, R.; Reischl, M.: Automated Design Process for Hybrid Regression Modeling with a One-class SVM. at-Automatisierungstechnik 67 (2019) 10, p.  843–852.Search in Google Scholar

6. Brinkrolf, J.; Hammer, B.: Interpretable Machine Learning with Reject Option. at-Automatisierungstechnik 66 (2018) 4, S. 283–290.Search in Google Scholar

7. Cai, M.; Pipattanasomporn, M.; Rahman, S.: Day-Ahead Building-Level Load Forecasts Using Deep Learning vs. Traditional Time-Series Techniques. Applied Energy 236 (2019), S. 1078–1088.Search in Google Scholar

8. Campani, M.; Vaglio, R.: A Simple Interpretation of the Growth of Scientific/Technological Research Impact Leading to Hype-type Evolution Curves. Scientometrics 103 (2015) 1, S. 75–83.Search in Google Scholar

9. Doneit, W.; Mikut, R.; Gröll, L.; Pychynski, T.; Reischl, M.: DaMoQ: Eine Open-Source-MATLAB-Toolbox zur Bewertung von Daten- und Modellqualität in Regressionen. at-Automatisierungstechnik 65 (2017) 3, S. 207–2018.Search in Google Scholar

10. Esteva, A.; Kuprel, B.; Novoa, R. A.; Ko, J.; Swetter, S. M.; Blau, H. M.; Thrun, S.: Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. Nature 542 (2017) 7639, S. 115–118.Search in Google Scholar

11. Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.: From Data Mining to Knowledge Discovery in Databases. AI Magazine 17 (1996), S. 37–54.Search in Google Scholar

12. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F. A.; Brendel, W.: ImageNet-trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness. arXiv preprint arXiv:1811.12231 (2018).Search in Google Scholar

13. González Ordiano, J. Á.; Gröll, L.; Mikut, R.; Hagenmeyer, V.: Probabilistic Energy Forecasting using the Nearest Neighbors Quantile Filter and Quantile Regression. International Journal of Forecasting 36 (2020) 2, S. 310–323.Search in Google Scholar

14. Hoffmann, F.; Bertram, T.; Mikut, R.; Reischl, M.; Nelles, O.: Benchmarking in Classification and Regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9 (2019) 5, e1318.Search in Google Scholar

15. Kickingereder, P.; Isensee, F.; et al.: Automated Quantitative Tumour Response Assessment of MRI in Neuro-oncology with Artificial Neural Networks: A Multicentre, Retrospective Study. The Lancet Oncology 20 (2019) 5, S. 728–740.Search in Google Scholar

16. Kohl, S.; Romera-Paredes, B.; et al.: A Probabilistic U-net for Segmentation of Ambiguous Images. In: Advances in Neural Information Processing Systems, S. 6965–6975, 2018.Search in Google Scholar

17. Kroll, A.: Computational Intelligence. De Gruyter Oldenbourg, 2016.Search in Google Scholar

18. LeCun, Y.; Bengio, Y.; Hinton, G.: Deep Learning. Nature 521(7553) (2015), S. 436–444.Search in Google Scholar

19. Legg, S.; Hutter, M.: A Collection of Definitions of Intelligence. In: Proceeding, Conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms, S. 17–24, 2007.Search in Google Scholar

20. Linden, A.; Fenn, J.: Understanding Gartner’s Hype Cycles. Techn. Ber., Strategic Analysis Report Nº R-20-1971. Gartner, Inc, 2003.Search in Google Scholar

21. Maier, A.; Schriegel, S.; Niggemann, O.: Big Data and Machine Learning for the Smart Factory – Solutions for Condition Monitoring, Diagnosis and Optimization. In: Industrial Internet of Things, S. 473–485, Springer, 2017.Search in Google Scholar

22. Maier-Hein, L.; Eisenmann, M.; et al.: Why Rankings of Biomedical Image Analysis Competitions Should be Interpreted with Care. Nature Communications 9 (2018) 1, S. 1–13.Search in Google Scholar

23. Münke, F. R.; Bartschat, A.; Chen, Y.; Mikut, R.; Reischl, M.: Evaluation of Features for Change Detection in Unstructured Image Data. In: Proc., 29. Workshop Computational Intelligence, Dortmund, S. 1–23, 2019.Search in Google Scholar

24. Paszke, A.; Gross, S.; et al.: PyTorch: An Imperative Style, High-performance Deep Learning Library. In: Advances in Neural Information Processing Systems, S. 8024–8035, 2019.Search in Google Scholar

25. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C. J.; Müller, K.-R.: Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond. arXiv:2003.07631, 2020.Search in Google Scholar

26. Schmidt, M.; Krüger, M.; Lienke, C.; Oeljeklaus, M.; Nattermann, T.; Mohamed, M.; Hoffmann, F.; Bertram, T.: Fahrstreifenerkennung mit Deep Learning für automatisierte Fahrfunktionen. at-Automatisierungstechnik 67 (2019) 10, S. 866–878.Search in Google Scholar

27. Schmidt, P.; Vahrenkamp, N.; Wächter, M.; Asfour, T.: Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images. In: IEEE International Conference on Robotics and Automation (ICRA), S. 6831–6838, IEEE, 2018.Search in Google Scholar

28. Schutera, M.; Elser, S.; Abhau, J.; Mikut, R.; Reischl, M.: Strategies for Supplementing Recurrent Neural Network Training for Spatio-temporal Prediction. at-Automatisierungstechnik 67 (2019) 7, S. 545–556.Search in Google Scholar

29. Schutera, M.; Just, S.; Gierten, J.; Mikut, R.; Reischl, M.; Pylatiuk, C.: Machine Learning Methods for Automated Quantification of Ventricular Dimensions. Zebrafish 16 (2019) 6, S. 542–545.Search in Google Scholar

30. Silver, D.; Schrittwieser, J.; et al.: Mastering the Game of Go without Human Knowledge. Nature 550 (2017) 7676, S. 354–359.Search in Google Scholar

31. Simonyan, K.; Vedaldi, A.; Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv preprint arXiv:1312.6034 (2013).Search in Google Scholar

32. Sommer, L. W.; Schuchert, T.; Beyerer, J.: Fast Deep Vehicle Detection in Aerial Images. In: IEEE Winter Conference on Applications of Computer Vision (WACV), S. 311–319, IEEE, 2017.Search in Google Scholar

33. Stegmaier, J.; Otte, J. C.; Kobitski, A.; Bartschat, A.; Garcia, A.; Nienhaus, G. U.; Strähle, U.; Mikut, R.: Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks. PLoS ONE 9(2) (2014), e90036.Search in Google Scholar

34. Stiller, C.; Burgard, W.; Deml, B.; Eckstein, L.; Flemisch, F.: Kooperativ interagierende Automobile. at-Automatisierungstechnik 66 (2018) 2, S. 81–99.Search in Google Scholar

35. Vogt, M.: An Overview of Deep Learning Techniques. at-Automatisierungstechnik 66 (2018) 9, S. 690–703.Search in Google Scholar

36. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M.: Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection. CIRP Annals 65 (2016) 1, S. 417–420.Search in Google Scholar

37. Winner, H.: Introducing Autonomous Driving: An Overview of Safety Challenges and Market Introduction Strategies. at-Automatisierungstechnik 66 (2018) 2, S. 100–106.Search in Google Scholar

38. Yasnitsky, L. N.: Whether Be New “Winter” of Artificial Intelligence? In: International Conference on Integrated Science, S. 13–17, Springer, 2019.Search in Google Scholar

Erhalten: 2020-03-28
Angenommen: 2020-03-30
Online erschienen: 2020-04-30
Erschienen im Druck: 2020-05-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston