Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 9, 2021

Probabilistic model predictive control for extended prediction horizons

Probabilistische Modellprädiktive Regelung für lange Prädiktionshorizonte
Tim Brüdigam, Johannes Teutsch, Dirk Wollherr, Marion Leibold and Martin Buss

Abstract

Detailed prediction models with robust constraints and small sampling times in Model Predictive Control yield conservative behavior and large computational effort, especially for longer prediction horizons. Here, we extend and combine previous Model Predictive Control methods that account for prediction uncertainty and reduce computational complexity. The proposed method uses robust constraints on a detailed model for short-term predictions, while probabilistic constraints are employed on a simplified model with increased sampling time for long-term predictions. The underlying methods are introduced before presenting the proposed Model Predictive Control approach. The advantages of the proposed method are shown in a mobile robot simulation example.

Zusammenfassung

Detaillierte Prädiktionsmodelle mit robusten Nebenbedingungen in der Modellprädiktiven Regelung führen zu konservativem Verhalten und hohem Rechenaufwand, besonders für lange Prädiktionshorizonte. In dieser Arbeit werden die Vorteile bisheriger Arbeiten zur Modellprädiktiven Regelung erweitert und kombiniert, um Prädiktionsunsicherheit zu berücksichtigen und den Rechenaufwand zu reduzieren. Die vorgeschlagene Methode nutzt robuste Nebenbedingungen und ein detailliertes Modell für kurzfristige Prädiktionen, während probabilistische Nebenbedingungen, ein vereinfachtes Modell und eine größere Abtastzeit für die langfristige Prädiktion genutzt werden. Die Vorteile der neuen Methode werden in einem Simulationsbeispiel analysiert.

References

1. T. Bäthge, S. Lucia and R. Findeisen. Exploiting models of different granularity in robust predictive control. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 2763–2768, Las Vegas, USA, Dec 2016.10.1109/CDC.2016.7798680Search in Google Scholar

2. M. J. Tippett, C. K. Tan and J. Bao. Non-constant prediction-step mpc for processes with multi-scale dynamics. IFAC Proceedings Volumes, 47(3):3068–3073, 2014. 19th IFAC World Congress.10.3182/20140824-6-ZA-1003.01093Search in Google Scholar

3. C. K. Tan, M. J. Tippett and J. Bao. Model predictive control with non-uniformly spaced optimization horizon for multi-timescale processes. Computers & Chemical Engineering, 84:162–170, 2016.10.1016/j.compchemeng.2015.08.010Search in Google Scholar

4. R. Cagienard, P. Grieder, E. C. Kerrigan and M. Morari. Move blocking strategies in receding horizon control. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), volume 2, pages 2023–2028, Dec 2004.10.1109/CDC.2004.1430345Search in Google Scholar

5. R. C. Shekhar and C. Manzie. Optimal move blocking strategies for model predictive control. Automatica, 61:27–34, 2015.10.1016/j.automatica.2015.07.030Search in Google Scholar

6. D. Q. Mayne. Model predictive control: Recent developments and future promise. Automatica, 50(12):2967–2986, 2014.10.1016/j.automatica.2014.10.128Search in Google Scholar

7. A. Mesbah. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems, 36(6):30–44, Dec 2016.10.1109/MCS.2016.2602087Search in Google Scholar

8. A. T. Schwarm and M. Nikolaou. Chance-constrained model predictive control. AIChE Journal, 45(8):1743–1752, 1999.10.1002/aic.690450811Search in Google Scholar

9. B. Kouvaritakis, M. Cannon, S. V. Rakovic and Q. Cheng. Explicit use of probabilistic distributions in linear predictive control. Automatica, 46(10):1719–1724, 2010.10.1049/ic.2010.0343Search in Google Scholar

10. M. Farina, L. Giulioni and R. Scattolini. Stochastic linear model predictive control with chance constraints – a review. Journal of Process Control, 44(Supplement C):53–67, 2016.10.1016/j.jprocont.2016.03.005Search in Google Scholar

11. M. Lorenzen, F. Dabbene, R. Tempo and F. Allgoewer. Constraint-tightening and stability in stochastic model predictive control. IEEE Transactions on Automatic Control, 62(7):3165–3177, July 2017.10.1109/TAC.2016.2625048Search in Google Scholar

12. L. Blackmore, M. Ono, A. Bektassov and B. C. Williams. A probabilistic particle-control approximation of chance-constrained stochastic predictive control. Trans. Rob., 26(3):502–517, June 2010.10.1109/TRO.2010.2044948Search in Google Scholar

13. G. Schildbach, L. Fagiano, C. Frei and M. Morari. The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica, 50(12):3009–3018, 2014.10.1016/j.automatica.2014.10.035Search in Google Scholar

14. T. Brüdigam, J. Teutsch, D. Wollherr and M. Leibold. Combined robust and stochastic model predictive control for models of different granularity. In 21st IFAC World Congress, Berlin, Germany, 2020.10.1016/j.ifacol.2020.12.515Search in Google Scholar

15. T. Brüdigam, D. Prader, D. Wollherr and M. Leibold. Model predictive control with models of different granularity and a non-uniformly spaced prediction horizon. In 2021 American Control Conference, 2021.10.23919/ACC50511.2021.9482617Search in Google Scholar

16. S. Gugercin and A. C. Antoulas. A survey of model reduction by balanced truncation and some new results. International Journal of Control, 77(8):748–766, 2004.10.1080/00207170410001713448Search in Google Scholar

17. J. B. Rawlings, D. Q. Mayne and M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.Search in Google Scholar

18. D. Q. Mayne, M. M. Seron and S. V. Raković. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, 41(2):219–224, 2005.10.1016/j.automatica.2004.08.019Search in Google Scholar

19. A. V. Raković, E. Kerrigan, K. Kouramas and D. Q. Mayne. Invariant approximations of robustly positively invariant sets for constrained linear discrete-time systems subject to bounded disturbances. Technical report, Department of Engineering, University of Cambridge, UK, 2004.10.3182/20050703-6-CZ-1902.01038Search in Google Scholar

20. M. Lorenzen, F. Dabbene, R. Tempo and F. Allgöwer. Stochastic mpc with offline uncertainty sampling. Automatica, 81:176–183, 2017.10.1016/j.automatica.2017.03.031Search in Google Scholar

21. M. C. Campi and S. Garatti. A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality. Journal of Optimization Theory and Applications, 148(2):257–280, Feb 2011.10.1007/s10957-010-9754-6Search in Google Scholar

22. B. Brito, B. Floor, L. Ferranti and J. Alonso-Mora. Model predictive contouring control for collision avoidance in unstructured dynamic environments. IEEE Robotics and Automation Letters, 4(4):4459–4466, 2019.10.1109/LRA.2019.2929976Search in Google Scholar

23. C. Jewison, R. S. Erwin and A. Saenz-Otero. Model predictive control with ellipsoid obstacle constraints for spacecraft rendezvous. IFAC-PapersOnLine, 48(9):257–262, 2015. 1st IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles ACNAAV’15.10.1016/j.ifacol.2015.08.093Search in Google Scholar

24. A. Schimpe and F. Diermeyer. Steer with me: A predictive, potential field-based control approach for semi-autonomous, teleoperated road vehicles. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pages 1–6, 2020.10.1109/ITSC45102.2020.9294702Search in Google Scholar

25. T. Brüdigam, J. Zhan, D. Wollherr and M. Leibold. Collision avoidance with stochastic model predictive control for systems with a twofold uncertainty structure, 2021. arXiv:2106.08463.10.1109/ITSC48978.2021.9564589Search in Google Scholar

26. T. Brüdigam, M. Olbrich, M. Leibold and D. Wollherr. Combining stochastic and scenario model predictive control to handle target vehicle uncertainty in autonomous driving. In 2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, USA, 2018.10.1109/ITSC.2018.8569909Search in Google Scholar

27. M. Herceg, M. Kvasnica, C. N. Jones and M. Morari. Multi-Parametric Toolbox 3.0. In Proc. of the European Control Conference, pages 502–510, Zürich, Switzerland, July 17–19, 2013.10.23919/ECC.2013.6669862Search in Google Scholar

28. A. Domahidi and J. Jerez. Forces professional. Embotech AG, https://embotech.com/FORCES-Pro, 2014–2019.Search in Google Scholar

29. A. Zanelli, A. Domahidi, J. Jerez and M. Morari. Forces nlp: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs. International Journal of Control, pages 1–17, 2017.10.1080/00207179.2017.1316017Search in Google Scholar

30. T. Brüdigam, M. Olbrich, D. Wollherr and M. Leibold. Stochastic model predictive control with a safety guarantee for automated driving. IEEE Transactions on Intelligent Vehicles, 2021.10.1109/TIV.2021.3074645Search in Google Scholar

Received: 2021-01-30
Accepted: 2021-08-16
Published Online: 2021-09-09
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow