Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 27, 2021

Theranostics – present and future

  • Leszek Królicki EMAIL logo and Jolanta Kunikowska


Theragnostics in nuclear medicine constitute an essential element of precision medicine. This notion integrates radionuclide diagnostics procedures and radionuclide therapies using appropriate radiopharmaceutics and treatment targeting specific biological pathways or receptors. The term theragnostics should also include another aspect of treatment: not only whether a given radioisotopic drug can be used, but also in what dose it ought to be used. Theragnostic procedures also allow predicting the effects of treatment based on the assessment of specific receptor density or the metabolic profile of neoplastic cells. The future of theragnostics depends not only on the use of new radiopharmaceuticals, but also on new gamma cameras. Modern theragnostics already require unambiguous pharmacokinetic and pharmacodynamic measurements based on absolute values. Only dynamic studies provide such a possibility. The introduction of the dynamic total-body PET-CT will enable this type of measurements characterizing metabolic processes and receptor expression on the basis of Patlak plot.

Corresponding author: Leszek Królicki, Department of Nuclear Medicine, Medical University of Warsaw, Warszawa, Poland, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Not applicable.

  5. Ethical approval: Not applicable.


1. Jewson, ND. The disappearance of the sick-man from medical cosmology, 1770-1870. Int J Epidemiol 2009;38:622–3. in Google Scholar

2. Terry, SF. Obama’s precision medicine initiative. Genet Test Mol Biomarkers 2015;19:113–4. in Google Scholar

3. Kelkar, SS, Reineke, TM. Theranostics: combining imaging and therapy. Bioconjugate Chem 2011;22:1879–903. in Google Scholar

4. Okamoto, S, Shiga, T, Tamaki, N. Clinical perspectives of theranostics. Molecules 2021;26:2232. in Google Scholar

5. Langbein, T, Weber, WA, Eiber, M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med 2019;60(2 Suppl):13S–9S. in Google Scholar

6. Hertz, S, Roberts, A. Radioactive iodine in the study of thyroid physiology: the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc 1946;131:81–6. in Google Scholar

7. Seidlin, SM, Marinelli, LD, Oshry, E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc 1946;132:838–47. in Google Scholar

8. Bauman, G, Charette, M, Reid, R, Sathya, J. Radiopharmaceuticals for the palliation of painful bone metastases—a systematic review. Radiother Oncol 2005;75:258–70. in Google Scholar

9. Kuroda, I. Effective use of strontium-89 in osseous metastases. Ann Nucl Med 2012;26:197–206. in Google Scholar

10. Parker, C, Nilsson, S, Heinrich, D, Helle, S, O’Sullivan, J, Fosså, S, et al.. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213–23. in Google Scholar

11. Taieb, D, Jha, A, Treglia, G, Pacak, K. Molecular imaging and radionuclide therapy of paraganglioma and pheochromocytoma. Endocr Relat Cancer 2019;26:R627–52. in Google Scholar

12. Jimenez, C, Erwin, WD, Chasen, B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers 2019;11:1018–38. in Google Scholar

13. Jackson, MR, Falzone, N, Vallis, KA. Advances in anticancer radiopharmaceuticals. Clin Oncol 2013;25:604–9. in Google Scholar

14. Giammarile, F, Chiti, A, Lassmann, M, Brans, B, Flux, G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imag 2008;35:1039–47. in Google Scholar

15. Strosberg, J, El-Haddad, G, Wolin, E, Hendifar, A, Yao, J, Chasen, B, et al.. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 2017;376:125–35. in Google Scholar

16. Luthatera. European medicine agency website. Available from: [Accessed 1 Jul 2019].Search in Google Scholar

17. U.S. Food and Drug Administration website. NETSPOT (kit for the preparation of gallium Ga 68 dotatate injection). Available from: [Accessed 1 Jul 2019].Search in Google Scholar

18. SomaKit TOC. European medicine agency website. Available from: [Accessed 1 Jul 2019].Search in Google Scholar

19. Roach, PJ, Francis, R, Emmett, L, Hsiao, E, Kneebone, A, Hruby, G, et al.. The impact of 68 Ga-PSMA PET/CT on management intent in prostate cancer; Results of an Australian prospective multicentre study. J Nucl Med 2018;59:82–8. in Google Scholar

20. Afaq, A, Alahmed, S, Chen, SH, Lengana, T, Haroon, A, Payne, H, et al.. Impact of 68Gaprostate-specific membrane antigen PET/CT on prostate cancer management. J Nucl Med 2018;59:89–92. in Google Scholar

21. Lenzo, NP, Meyrick, D, Turner, JH. Review of gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics 2018;8:16–33. in Google Scholar

22. Beheshti, M, Paymani, Z, Brilhante, J, Geinitz, H, Gehring, D, Leopoldseder, T, et al.. Optimal time-point for 68Ga-PSMA-11. Eur J Nucl Med Mol Imag 2018;45:1188–96. in Google Scholar

23. Sartor, O, de Bono, J, Chi, KN, Fizazi, K, Herrmann, K, Rahbar, K, et al.. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 2021;16:1091–103. in Google Scholar

24. Perera, M, Papa, N, Roberts, M, Williams, M, Udovicich, C, Vela, I, et al.. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol 2020;77:403–17. in Google Scholar

25. Schoenberger, J, Rüschoff, J, Grimm, D, Marienhagen, J, Rümmele, P, Meyringer, R, et al.. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747–54.10.1089/105072502760339307Search in Google Scholar PubMed

26. Robbins, RJ, Wan, Q, Grewal, RK, Reibke, R, Gonen, M, Strauss, HW, et al.. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]Fluoro-2-Deoxy-d-Glucose-Positron Emission Tomography scanning. J Clin Endocrinol Metab 2006;91:498–505. in Google Scholar

27. Deandreis, D, Al Ghuzlan, A, Leboulleux, S, Lacroix, L, Garsi, JP, Talbot, M, et al.. Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18:159–69. in Google Scholar

28. Yoshio, K, Sato, S, Okumura, Y, Katsui, K, Takemoto, M, Suzuki, E, et al.. The local efficacy of I-131 for F-18 FDG PET positive lesions in patients with recurrent or metastatic thyroid carcinomas. Clin Nucl Med 2011;36:113–7. in Google Scholar

29. Stokkel, MPM, Duchateau, CSJ, Dragoiescu, C. The value of FDG-PET in the follow-up of differentiated thyroid cancer: a review of the literature. Q J Nucl Med Mol Imaging 2006;50:78–87.Search in Google Scholar

30. Reske, SN, Kotzerke, J. FDG-PET for clinical use. Eur J Nucl Med Mol Imag 2001;28:1707–23. in Google Scholar

31. Nanni, C, Rubello, D, Fanti, S, Farsad, M, Ambrosini, V, Rampin, L, et al.. Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother 2006;60:409–13. in Google Scholar

32. Shiga, T, Tsukamoto, E, Nakada, K, Morita, K, Kato, T, Mabuchi, M, et al.. Comparison of (18)F-FDG, (131)I-Na, and (201)Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med 2001;42:414–9.Search in Google Scholar

33. Gaertner, FC, Okamoto, S, Shiga, T, Ito, YM, Uchiyama, Y, Manabe, O, et al.. FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well-differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med 2015;40:378–83. in Google Scholar

34. Alevroudis, E, Spei, M-E, Chatziioannou, S, Tsoli, M, Wallin, G, Kaltsas, G, et al.. Clinical utility of 18F-FDG PET in neuroendocrine tumors prior to peptide receptor radionuclide therapy: a systematic review and meta-analysis. Cancers 2021;13:1813–28. in Google Scholar

35. Hockel, M, Schlenger, K, Aral, B, Mitze, M, Schaffer, U, Vaupel, P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–15.Search in Google Scholar

36. Chang, J, Erler, J. Hypoxia-mediated metastasis. Adv Exp Med Biol 2014;772:55–81. in Google Scholar

37. Eisinger-Mathason, TSK, Zhang, M, Qiu, Q, Skuli, N, Nakazawa, MS, Karakasheva, T, et al.. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 2013;3:1190–205. in Google Scholar

38. Wenzl, T, Wilkens, JJ. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Radiat Oncol 2011;6:171. in Google Scholar

39. Zschaeck, S, Löck, S, Hofheinz, F, Zips, D, Saksø Mortensen, L, Zöphel, K, et al.. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother Oncol 2020;149:189–96. in Google Scholar

40. Zschaeck, S, Steinbach, J, Troost, EG. FMISO as a biomarker for clinical radiation oncology. Cancer Res 2016;198:189–201. in Google Scholar

41. Zaker, N, Kotasidis, F, Garibotto, V, Zaidi, H. Assessment of lesion detectability in dynamic whole-body PET imaging using compartmental and Patlak parametric mapping. Clin Nucl Med 2020;45:e221–31. in Google Scholar

42. Yao, S, Feng, T, Zhao, Y, Wu, R, Wang, R, Wu, S, et al.. Xu B Simplified protocol for whole-body Patlak parametric imaging with (18) F-FDG PET/CT: feasibility and error analysis. Med Phys 2021;48:2160–9. in Google Scholar

43. Badawi, RD, Shi, H, Hu, P, Chen, S, Xu, T, Price, PM, et al.. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299–303. in Google Scholar

44. Karp, JS, Viswanath, V, Geagan, MJ, Muehllehner, G, Pantel, AR, Parma, MJ, et al.. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020;61:136–43. in Google Scholar

45. Niedzwiecki, S, Białas, P, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A. J-PET: a new technology for the whole-body PET imaging. Acta Phys Pol B 2017;48:1567.10.5506/APhysPolB.48.1567Search in Google Scholar

46. Zhang, X, Xie, Z, Berg, E, Judenhofer, MS, Liu, W, Xu, T, et al.. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med 2020;61:285–91. in Google Scholar

47. Moskal, P, Dulski, K, Chug, N, Curceanu, C, Czerwiński, E, Dadgar, M, et al.. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394. in Google Scholar

48. Moskal, P, Gajos, A, Mohammed, M, Chhokar, J, Chug, N, Curceanu, C, et al.. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12:5658. in Google Scholar

49. Moskal, P, Stępień, EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. Pet Clin 2020;15:439–52. in Google Scholar

50. Mier, W, Kratochwil, C, Hassel, JC, Giesel, FL, Beijer, B, Babich, JW, et al.. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med 2014;55:9–14. in Google Scholar

51. Hamson, EJ, Keane, FM, Tholen, S, Schilling, O, Gorrell, MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteonomics Clin Appl 2014;8:454–63. in Google Scholar

52. Jiang, GM, Xu, W, Du, J, Zhang, K-S, Zhang, Q-G, Wang, X-W, et al.. The application of the fibroblast activation protein alpha-targeted immunotherapy strategy. Oncotarget 2016;7:33472–82. in Google Scholar

53. Lindner, T, Loktev, A, Altmann, A, Giesel, F, Kratochwil, C, Debus, J, et al.. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018;59:1415–22. in Google Scholar

54. Loktev, A, Lindner, T, Mier, W, Debus, J, Altmann, A, Jäger, D, et al.. A tumor-imaging method targeting cancer associated fibroblasts. J Nucl Med 2018;59:1423–9. in Google Scholar

55. Giesel, FL, Kratochwil, C, Lindner, T, Marschalek, MM, Loktev, A, Lehnert, W, et al.. FAPI-PET/CT: biodistribution and preliminary dosimetry estimate of two DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 2019;60:386–92. in Google Scholar

56. St-Gelais, F, Jomphe, C, Trudeau, LE. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J Psychiatry Neurosci 2006;31:229–45.Search in Google Scholar

57. Osadchii, OE. Emerging role of neurotensin in regulation of the cardiovascular system. Eur J Pharmacol 2015;762:184–92. in Google Scholar

58. Hou, T, Shi, L, Wang, J, Wei, L, Qu, L, Zhang, X, et al.. Label-free cell phenotypic profiling and pathway deconvolution of neurotensin receptor-1. Pharmacol Res 2016;108:39–45. in Google Scholar

59. Korner, M, Waser, B, Strobel, O, Buchler, M, Reubi, JC. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res 2015;5:17. in Google Scholar

60. Schulz, J, Rohracker, M, Stiebler, M, Goldschmidt, J, Grosser, OS, Osterkamp, F, et al.. Comparative evaluation of the biodistribution profiles of a series of nonpeptidic neurotensin receptor-1 antagonists reveals a promising candidate for theranostic applications. J Nucl Med 2016;57:1120–3. in Google Scholar

61. Schulz, J, Rohracker, M, Stiebler, M, Goldschmidt, J, Stöber, F, Noriega, M, et al.. Proof of therapeutic efficacy of a 177Lulabeled neurotensin receptor 1 antagonist in a colon carcinoma xenograft model. J Nucl Med 2017;58:936–41. in Google Scholar

62. Baum, RP, Singh, A, Schuchardt, C, Kulkarni, HR, Klette, I, Wiessalla, S, et al.. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med 2018;59:809–14. in Google Scholar

63. Kang, L, Jiang, D, England, CG, Barnhart, TE, Yu, B, Rosenkrans, ZT, et al.. ImmunoPET imaging of CD38 in murine lymphoma models using 89Zr-labeled daratumumab. Eur J Nucl Med Mol Imag 2018;45:1372–81. in Google Scholar

64. Ulaner, GA, Sobol, NB, O’Donoghue, JA, Kirov, AS, Riedl, CC, Min, R, et al.. CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology 2020;295:606–15. in Google Scholar

65. Dawicki, W, Allen, KJH, Jiao, R, Malo, ME, Helal, M, Berger, MS, et al.. Daratumumab-(225)Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. OncoImmunology 2019;8:1607673. in Google Scholar

66. Soodgupta, D, Hurchla, MA, Jiang, M, Zheleznyak, A, Weilbaecher, KN, Anderson, CJ, et al.. Very late antigen-4 (alpha(4) beta(1) Integrin) targeted PET imaging of multiple myeloma. PLoS One 2013;8:e55841. in Google Scholar

67. Soodgupta, D, Zhou, H, Beaino, W, Lu, L, Rettig, M, Snee, M, et al.. Ex vivo and in vivo evaluation of overexpressed VLA-4 in multiple myeloma using LLP2A imaging agents. J Nucl Med 2016;57:640–5. in Google Scholar

68. Beaino, W, Nedrow, JR, Anderson, CJ. Evaluation of (68)Ga- and (177) Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm 2015;12:1929–38. in Google Scholar

69. Choi, J, Beaino, W, Fecek, RJ, Fabian, KPL, Laymon, CM, Kurland, BF, et al.. Combined VLA-4-targeted radionuclide therapy and immunotherapy in a mouse model of melanoma. J Nucl Med 2018;59:1843–9. in Google Scholar

70. Habringer, S, Lapa, C, Herhaus, P, Schottelius, M, Istvanffy, R, Steiger, K, et al.. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics 2018;8:369–83. in Google Scholar

71. Vag, T, Steiger, K, Rossmann, A, Keller, U, Noske, A, Herhaus, P, et al.. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res 2018;8:90–9. in Google Scholar

72. Herrmann, K, Schottelius, M, Lapa, C, Osl, T, Poschenrieder, A, Hänscheid, H, et al.. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med 2016;57:248–51. in Google Scholar

73. Dehdashti, F, Wu, N, Bose, R, Naughton, MJ, Ma, CX, Marquez-Nostra, BV, et al.. Evaluation of [(89)Zr]trastuzumab-PET/CT in differentiating HER2-positive from HER2-negative breast cancer. Breast Cancer Res Treat 2018;169:523–30. in Google Scholar

74. Sanchez-Vega, F, Hechtman, JF, Castel, P, Ku, GY, Tuvy, Y, Won, H, et al.. EGFR and MET amplifications determine response to her2 inhibition in ERBB2-amplified esophagogastric cancer. Cancer Discov 2019;9:199–209. in Google Scholar

Received: 2021-11-03
Accepted: 2021-11-17
Published Online: 2021-12-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2023 from
Scroll to top button