Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2021

Novel biomarker and drug delivery systems for theranostics – extracellular vesicles

  • Ewa Ł. Stępień ORCID logo EMAIL logo , Carina Rząca and Paweł Moskal ORCID logo


Extracellular vesicles (EVs) are nano- and micro-sized double-layered membrane entities derived from most cell types and released into biological fluids. Biological properties (cell-uptake, biocompatibility), and chemical (composition, structure) or physical (size, density) characteristics make EVs a good candidate for drug delivery systems (DDS). Recent advances in the field of EVs (e.g., scaling-up production, purification) and developments of new imaging methods (total-body positron emission tomography [PET]) revealed benefits of radiolabeled EVs in diagnostic and interventional medicine as a potential DDs in theranostics.

Corresponding author: Prof. Ewa Łucja Stępień, Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, 11 Łojasiewicza St., 30-348Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland; and Theranostics Center, Jagiellonian University, Kraków, Poland, Phone: +48 12 664 47 62, E-mail:

Funding source: Narodowe Centrum Nauki

Award Identifier / Grant number: 2019/33/B/NZ3/01004

  1. Research funding: This study was funded by the Polish National Science Center in the 17th edition of OPUS Competition [grant number 2019/33/B/NZ3/01004] to Ewa Stępień.

  2. Author contribution: Substantial contributions to the conception or design of the work: Ewa Stepien and Paweł Moskal. Drafting the work: Ewa Stępień, Carina Rząca and Paweł Moskal. Drawing figures: Ewa Stępień and Carina Rząca. Revising the work critically for important intellectual content: Ewa Stępień and Paweł Moskal. Final approval of the version to be published: Ewa Stępień, Carina Rząca and Paweł Moskal.

  3. Competing interest: No conflict of interests exists.

  4. Informed consent: No informed consent was needed.

  5. Ethical approval: This study includes two microphotographs of human platelets from the archive by Ewa Stępień.


1. Farquhar, MG, Palade, GE. Segregation of ferritin in glomerular protein absorption droplets. J Biophys Biochem Cytol 1960;7:297–304. in Google Scholar

2. Predescu, SA, Predescu, DN, Palade, GE. Endothelial transcytotic machinery involves supramolecular protein-lipid complexes. Mol Biol Cell 2001;12:1019–33. in Google Scholar

3. Wolf, P. The nature and significance of platelet products in human plasma. Br J Haematol 1967;13:269–88. in Google Scholar

4. Kim, DK, Lee, J, Kim, SR, Choi, DS, Yoon, YJ, Kim, JH, et al.. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015;1531:933–9. in Google Scholar

5. Van Niel, G, D’Angelo, G, Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018;19:213–28. in Google Scholar

6. Surman, M, Drożdż, A, Stępień, E, Przybyło, M. Extracellular vesicles as drug delivery systems - methods of production and potential therapeutic applications. Curr Pharmaceut Des 2019;25:132–54. in Google Scholar

7. Cocucci, E, Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015;25:364–72. in Google Scholar

8. Santavanond, JP, Rutter, SF, Atkin-Smith, GK, Poon, IKH. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell Biochem 2021;97:61–88. in Google Scholar

9. Konkolewska, M, Stępień, E, Kurc, S. A thousand words about microparticles in cardiology. J Med Sci 2014;2:189–93. in Google Scholar

10. Heijnen, HF, Schiel, AE, Fijnheer, R, Geuze, HJ, Sixma, JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999;94:3791–9. in Google Scholar

11. Holme, PA, Solum, NO, Brosstad, F, Egberg, N, Lindahl, TL. Stimulated Glanzmann’s thrombasthenia platelets produced microvesicles. Microvesiculation correlates better to exposure of procoagulant surface than to activation of GPIIb-IIIa. Thromb Haemostasis 1995;74:1533. in Google Scholar

12. Thiagarajan, P, Tait, JF. Collagen-induced exposure of anionic phospholipid in platelets and platelet-derived microparticles. J Biol Chem 1991;266:24302. in Google Scholar

13. Stępień, E, Stankiewicz, E, Zalewski, J, Godlewski, J, Zmudka, K, Wybrańska, I. Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation. Arch Med Res 2012;43:31–5. in Google Scholar

14. Belniak-Legieć, E, Stelmasiak, Z. Blood platelet activation markers in patients with acute cerebral infarction during the earliest stage of the disease–evaluation using flow cytometry methods. Neurol Neurochir Pol 2000;34:853–64.Search in Google Scholar

15. Stępień, EŁ, Durak-Kozica, M, Kamińska, A, Targosz-Korecka, M, Libera, M, Tylko, G, et al.. Circulating ectosomes: determination of angiogenic microRNAs in type 2 diabetes. Theranostics 2018;8:3874–90. in Google Scholar

16. Omoto, S, Nomura, S, Shouzu, A, Hayakawa, T, Shimizu, H, Miyake, Y, et al.. Significance of platelet-derived microparticles and activated platelets in diabetic nephropathy. Nephron 1999;81:271–7. in Google Scholar

17. Giró, O, Jiménez, A, Pané, A, Badimon, L, Ortega, E, Chiva-Blanch, G. Extracellular vesicles in atherothrombosis and cardiovascular disease: friends and foes. Atherosclerosis 2021;330:61–75.10.1016/j.atherosclerosis.2021.07.002Search in Google Scholar PubMed

18. Roman, M, Kamińska, A, Drożdż, A, Platt, M, Kuźniewski, M, Małecki, MT, et al.. Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes. Nanomedicine 2019;17:137–49. in Google Scholar

19. Kamińska, A, Roman, M, Wróbel, A, Gala-Błądzińska, A, Małecki, MT, Paluszkiewicz, C, et al.. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes. Nanomedicine 2022;39:102468. in Google Scholar

20. Aitekenov, S, Gaipov, A, Bukasov, R. Review: detection and quantification of proteins in human urine. Talanta 2021;223:121718. in Google Scholar

21. Musante, L, Tataruch, D, Gu, D, Liu, X, Forsblom, C, Groop, PH, et al.. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. J Diabetes Res 2015;2015:289734. in Google Scholar

22. Tataruch-Weinert, D, Musante, L, Kretz, O, Holthofer, H. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination. J Extracell Vesicles 2016;5:30281. in Google Scholar

23. Lytvyn, Y, Xiao, F, Kennedy, CR, Perkins, BA, Reich, HN, Scholey, JW, et al.. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 2017;60:581–4. in Google Scholar

24. Erdbrügger, U, Blijdorp, CJ, Bijnsdorp, IV, Borràs, FE, Burger, D, Bussolati, B, et al.. Urinary extracellular vesicles: a position paper by the urine task force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021;10:e12093.10.1002/jev2.12093Search in Google Scholar

25. Nilsson, J, Skog, J, Nordstrand, A, Baranov, V, Mincheva-Nilsson, L, Breakefield, XO, et al.. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 2009;100:1603–7. in Google Scholar

26. Welton, JL, Khanna, S, Giles, PJ, Brennan, P, Brewis, IA, Staffurth, J, et al.. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 2010;9:1324–38. in Google Scholar

27. Wang, W, Li, H, Zhou, Y, Jie, S. Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomarkers 2013;13:351–7. in Google Scholar

28. Szabo, G, Momen-Heravi, F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017;14:455–66. in Google Scholar

29. Yates, KR, Welsh, J, Echrish, HH, Greenman, J, Maraveyas, A, Madden, LA. Pancreatic cancer cell and microparticle procoagulant surface characterization: involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine. Blood Coagul Fibrinolysis 2011;22:680–7. in Google Scholar

30. Yin, L, Liu, X, Shao, X, Feng, T, Xu, J, Wang, Q, et al.. The role of exosomes in lung cancer metastasis and clinical applications: an updated review. J Transl Med 2021;19:312. in Google Scholar

31. Periayah, MH, Halim, AS, Mat Saad, AZ. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res 2017;11:319–27.Search in Google Scholar

32. Van Wijk, MJ, Van Bavel, E, Sturk, A, Nieuwland, R. Microparticles in cardiovascular diseases. Cardiovasc Res 2003;59:277–87. in Google Scholar

33. Mause, SF, Von Hundelshausen, P, Zernecke, A, Koenen, RR, Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005;25:1512–8. in Google Scholar

34. McGregor, L, Martin, J, McGregor, JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci 2006;11:830–7. in Google Scholar

35. Chyrchel, B, Drożdż, A, Długosz, D, Stępień, EŁ, Surdacki, A. Platelet reactivity and circulating platelet-derived microvesicles are differently affected by P2Y12 receptor antagonists. Int J Med Sci 2019;16:264–75. in Google Scholar

36. Sekuła, M, Janawa, G, Stankiewicz, E, Stępień, E. Endothelial microparticle formation in moderate concentrations of homocysteine and methionine in vitro. Cell Mol Biol Lett 2011;16:69–78. in Google Scholar

37. Zhu, J, Xie, R, Piao, X, Hou, Y, Zhao, C, Qiao, G, et al.. Homocysteine enhances clot-promoting activity of endothelial cells via phosphatidylserine externalization and microparticles formation. Amino Acids 2012;43:1243–50. in Google Scholar

38. Sabatier, F, Darmon, P, Hugel, B, Combes, V, Sanmarco, M, Velut, JG, et al.. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002;51:2840–5. in Google Scholar

39. Kotb, NA, Gaber, R, Salah, W, Elhendy, A. Relations among glycemic control, circulating endothelial cells, nitric oxide, and flow mediated dilation in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2012;120:460–5. in Google Scholar

40. Li, S, Wei, J, Zhang, C, Li, X, Meng, W, Mo, X, et al.. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Cell Physiol Biochem 2016;39:2439–50. in Google Scholar

41. Nielsen, MH, Irvine, H, Vedel, S, Raungaard, B, Beck-Nielsen, H, Handberg, A. The impact of lipoprotein-associated oxidative stress on cell-specific microvesicle release in patients with familial hypercholesterolemia. Oxid Med Cell Longev 2016;2016:2492858. in Google Scholar

42. Lichtenauer, M, Goebel, B, Fritzenwanger, M, Förster, M, Betge, S, Lauten, A, et al.. Simulated temporary hypoxia triggers the release of CD31+/Annexin+ endothelial microparticles: a prospective pilot study in humans. Clin Hemorheol Microcirc 2015;61:83–90. in Google Scholar

43. Jia, L, Fan, J, Cui, W, Liu, S, Li, N, Lau, WB, et al.. Endothelial cell-derived microparticles from patients with obstructive sleep apnea hypoxia syndrome and coronary artery disease increase aortic endothelial cell dysfunction. Cell Physiol Biochem 2017;43:2562–70. in Google Scholar

44. Johnsen, KB, Gudbergsson, JM, Andresen, TL, Simonsen, JB. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta 2019;1871:109–16. in Google Scholar

45. Available from: [Accessed 9 Nov 2021].Search in Google Scholar

46. Available from: [Accessed 9 Nov 2021].Search in Google Scholar

47. Gąsecka, A, Nieuwland, R, Budnik, M, Dignat-George, F, Eyileten, C, Harrison, P, et al.. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. J Thromb Haemostasis 2020;18:609–23. in Google Scholar

48. Tutrone, R, Donovan, MJ, Torkler, P, Tadigotla, V, McLain, T, Noerholm, M, et al.. Clinical utility of the exosome based ExoDx Prostate (IntelliScore) EPI test in men presenting for initial Biopsy with a PSA 2–10 ng/mL. Prostate Cancer Prostatic Dis 2020;23:607–14. in Google Scholar

49. Vader, P, Mol, EA, Pasterkamp, G, Schiffelers, RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016;106:148–56. in Google Scholar

50. Surman, M, Hoja-Łukowicz, D, Szwed, S, Drożdż, A, Stępień, E, Przybyło, M. Human melanoma-derived ectosomes are enriched with specific glycan epitopes. Life Sci 2018;207:395–411. in Google Scholar

51. Andriessen, A, Bongiovanni, L, Driedonks, TAP, van Liere, E, Seijger, A, Hegeman, CV, et al.. CDC6: a novel canine tumour biomarker detected in circulating extracellular vesicles. Vet Comp Oncol 2021;58:1476–5810. in Google Scholar

52. Usynin, IF, Dudarev, AN, Miroshnichenko, SM, Tkachenko, TA, Gorodetskaya, AY. Effect of native and modified apolipoprotein A-I on DNA synthesis in cultures of different cells. Bull Exp Biol Med 2017;164:247–51. in Google Scholar

53. Surman, M, Kędracka-Krok, S, Hoja-Łukowicz, D, Jankowska, U, Drożdż, A, Stępień, EŁ, et al.. Mass spectrometry-based proteomic characterization of cutaneous melanoma ectosomes reveals the presence of cancer-related molecules. Int J Mol Sci 2020;21:2934. in Google Scholar

54. Tai, CS, Chen, YY, Chen, WL. β-lactoglobulin influences human immunity and promotes cell proliferation. BioMed Res Int 2016;2016:7123587. in Google Scholar

55. Schneider, AB, Edelhoch, H. Equilibrium density centrifugation of thyroglobulin in RbCI: effect of iodine. J Biol Chem 1971;246:6592–8. in Google Scholar

56. Pintó, RM, Ribes, E, Jofre, J, Bosch, A. Retroviral properties inherent to viral erythrocytic infection in sea bass. Arch Virol 1995;140:721–35. in Google Scholar

57. Martin, JF, Shaw, T, Heggie, J, Penington, DG. Measurement of the density of human platelets and its relationship to volume. Br J Haematol 1983;54:337–52. in Google Scholar

58. Langured, T, Multia, E, Riekkola, ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021;1636:461773.10.1016/j.chroma.2020.461773Search in Google Scholar PubMed

59. Johnson, J, Wu, YW, Blyth, C, Lichtfuss, G, Goubran, H, Burnouf, T. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol 2021;39:598–612. in Google Scholar

60. Weiss, J, Sauer, A, Herzog, M, Böger, RH, Haefeli, WE, Benndorf, RA. Interaction of thiazolidinediones (glitazones) with the ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. Pharmacology 2009;84:264–70. in Google Scholar

61. Drożdż, A, Kamińska, A, Surman, M, Gonet-Surówka, A, Jach, R, Huras, H, et al.. Low-vacuum filtration as an alternative extracellular vesicle concentration method: a comparison with ultracentrifugation and differential centrifugation. Pharmaceutics 2020;12:872.10.20944/preprints202007.0655.v1Search in Google Scholar

62. Konoshenko, MY, Lekchnov, EA, Vlassov, AV, Laktionov, PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int 2018;2018:8545347. in Google Scholar

63. Talebjedi, B, Tasnim, N, Hoorfar, M, Mastromonaco, GF, Monteiro, DE, Ferraz, M. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment. Front Vet Sci 2021;7:620809. in Google Scholar

64. Duong, P, Chung, A, Bouchareychas, L, Raffai, RL. Cushioned-density gradient ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles. PLoS One 2019;14:e0215324. in Google Scholar

65. Marsh, SR, Pridham, KJ, Jourdan, J, Gourdie, RG. Novel protocols for scalable production of high quality purified small extracellular vesicles from bovine milk. Nanotheranostics 2021;5:488–98. in Google Scholar

66. Grangier, A, Branchu, J, Volatron, J, Piffoux, M, Gazeau, F, Wilhelm, C, et al.. Technological advances towards extracellular vesicles mass production. Adv Drug Deliv Rev 2021;176:113843. in Google Scholar

67. Guerreiro, EM, Vestad, B, Steffensen, LA, Aass, HCD, Saeed, M, Øvstebø, R, et al.. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One 2018;13:e0204276. in Google Scholar

68. Zhang, C, Shang, Y, Chen, X, Midgley, AC, Wang, Z, Zhu, D, et al.. Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano 2020;14:12133. in Google Scholar

69. Kraińska, MM, Pietrzkowska, N, Turlej, E, Zongjin, L, Marycz, K. Extracellular vesicles derived from mesenchymal stem cells as a potential therapeutic agent in acute kidney injury (AKI) in felines: review and perspectives. Stem Cell Res Ther 2021;12:504. in Google Scholar

70. Mol, EA, Lei, Z, Roefs, MT, Bakker, MH, Goumans, MJ, Doevendans, PA, et al.. Injectable supramolecular ureidopyrimidinone hydrogels provide sustained release of extracellular vesicle therapeutics. Adv Healthcare Mater 2019;8:1900847. in Google Scholar

71. Moskal, P, Stępień, EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. Pet Clin 2020;15:439–52. in Google Scholar

72. Vandenberghe, S, Moskal, P, Karp, JS. State of the art in total body PET. EJNMMI Phys 2020;7:35. in Google Scholar

73. Durak-Kozica, M, Baster, Z, Kubat, K, Stępień, E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett 2018;23:57. in Google Scholar

74. Alavi, A, Reivich, M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med 2002;32:2–5. in Google Scholar

75. Niedźwiecki, S, Białas, P, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A, et al.. J-PET: a new technology for the whole-body PET imaging. Acta Phys Pol B 2017;48:1567.10.5506/APhysPolB.48.1567Search in Google Scholar

76. Moskal, P, Bednarski, T, Niedźwiecki, S, Silarski, M, Czerwiński, E, Kozik, T, et al.. Synchronization and calibration of the 24-modules J-PET prototype with 300-mm axial field of view. IEEE Trans Instrum Meas 2020;70:1–10.10.1109/TIM.2020.3018515Search in Google Scholar

77. Dulski, K, Bass, S, Chhokar, J, Chug, N, Curceanu, C, Czerwiński, E, et al.. The J-PET detector—a tool for precision studies of ortho-positronium decays. Nucl Instrum Methods Phys Res, Sect A 2021;1008:165452. in Google Scholar

78. Moskal, P, Kisielewska, D, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A, et al.. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017. in Google Scholar

79. Moskal, P, Gajos, A, Mohammed, M, Chhokar, J, Chug, N, Curceanu, C, et al.. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12:5658. in Google Scholar

80. Choiński, J, Łyczko, M. Prospects for the production of radioisotopes and radio bioconjugates for Theranostics. Bio Algorithm Med Syst 2021;17:241–57. in Google Scholar

81. Królicki, L, Kunikowska, J. Theranostics - present and future. Bio Algorithm Med Syst 2021;17:213–20. in Google Scholar

82. Moskal, P, Dulski, K, Chug, N, Curceanu, C, Czerwiński, E, Dadgar, M, et al.. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394. in Google Scholar

83. Moskal, P, Jasińska, B, Stępień, EŁ, Bass, SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527–9. in Google Scholar

84. Khan, AA, Rosales, R. Radiolabelling of extracellular vesicles for PET and SPECT imaging. Nanotheranostics 2021;5:256–74. in Google Scholar

85. Royo, F, Cossío, U, Ruiz de Angulo, A, Llop, J, Falcon-Perez, JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale 2019;11:1531–7. in Google Scholar

86. Shi, S, Li, T, Wen, X, Wu, SY, Xiong, C, Zhao, J, et al.. Copper-64 labeled PEGylated exosomes for in vivo positron emission tomography and enhanced tumor retention. Bioconjugate Chem 2019;30:2675–83. in Google Scholar

Received: 2021-11-20
Accepted: 2021-11-25
Published Online: 2021-12-22

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.12.2023 from
Scroll to top button