
The B.E. Journal of Theoretical Economics. 2023; 23(2): 577–600

Research Article

Chung-Hui Chou*
Software Cracking and Degrees of Software
Protection
https://doi.org/10.1515/bejte-2021-0029
Received March 2, 2021; accepted May 23, 2022

Abstract: Progress of hardware technologies and diffusion of computer knowl-
edge enable consumers to crack software if they decide to use software illegally.
This paper constructs a software market in which consumers are horizontally dif-
ferentiated inaccordancewith socialnormsof copyrightprotection toexamine the
monopolistic producer’s software protection behaviors with considering partial
compatibility between genuine and cracked software as well as utility loss from
using cracked software. Our research presents the following results. First, when
network externalities are weak, the monopolist would set a degree of protection
which induces existence of software cracking to enhance consumers’ willingness
to pay for genuine software by improving network benefits. Conversely, if network
externalities are sufficiently strong, then software producer would set a degree of
protection which stop software cracking completely. This implies that stopping
software cracking is not possible without network effects. Second, if utility loss
fromusing cracked software is severe (mild), then strengthening (weakening) net-
work externalities or lowering (raising) compatibility may reduce the number of
consumers using cracked software and increase software producer’s profits con-
sequently. Finally, we show that the monopolistic producer tends to over-protect
software when genuine and cracked software are highly compatible or network
externalities are relatively weak which results in inadequate consumers using
cracked software for social optimum.

Keywords: network externalities, partial compatibility, software cracking

JEL Classification: L11, L86, O34

*Corresponding author: Chung-Hui Chou, Department of Finance, I-Shou University, Kaohsiung
City 84001, Taiwan, ROC, E-mail: chchou@isu.edu.tw. https://orcid.org/0000-0002-4126-9263

https://doi.org/10.1515/bejte-2021-0029
mailto:chchou@isu.edu.tw
https://orcid.org/0000-0002-4126-9263

578 | C.-H. Chou

1 Introduction
Software piracy can be observed easily in computer industries which causes enor-
mousdamage in softwareproducers’ profits. In thepast decades, economists have
taken various approaches to analyze software manufacturers’ copyright protec-
tion behaviors and the impacts of piracy on profits. Novos and Waldman (1984),
Johnson (1985), Liebowitz (1985) and Bensen and Kirby (1989) studied copyright
protection in a market without network externalities which are more applica-
ble to books or journals industries. Conner and Rulmet (1991), Takayama (1994)
and Slive and Bernhardt (1998) showed that permission of software piracy may
enhance monopolistic firm’s profits under significant network externalities. Shy
and Thisse (1999) considered a duopoly market in which firms produce horizon-
tally differentiated software and presented that software without protection may
be an equilibrium outcome under significant network externalities. Rasch and
Wenzel (2013) studied the impacts of software piracy on pricing in a two-sided
market. In literature, there were some papers considering software protection as
a continuous degree rather than a dichotomous decision. Yoon (2002) assumed
that degrees of software protection affect consumers’ reproduction costs in a
market without network externalities, and showed that raising copyright protec-
tion may enhance social welfare. Jain (2008) assumed that degrees of software
protection determine probabilities of consumers using pirated software without
incurring copy costs, and found that duopolistic softwaremanufacturersmayper-
mit software piracy under weak network externalities. Inceoglu (2015) considered
that degrees of software protection determine substitution between genuine and
pirated software, and discovered that software piracy may benefit an incumbent
by making entry less profitable. It is worth mentioning that in the existing litera-
ture, pirated software is generally assumed to be fully compatible with genuine
one.

Progress of hardware technologies and diffusion of computer skills make
drastic changes in software piracy. Nowadays consumers who want to use soft-
ware illegally would crack genuine software rather than purchase pirated one.
From this viewpoint, degrees of software protection determine the amount of
effort required for cracking software successfully. It is reasonable to infer that
consumers would suffer more disutility to crack more-protected software suc-
cessfully. Besides, consumers usually feel that the malfunction risk of cracked
software is higher than that of genuine one. This motivates us to consider utility
loss from using cracked software. In other words, consumers gain less intrinsic
utility from cracked software than they do from genuine one.

The extents of accordance with social norms of software protection also
affect consumers’ software adoption behaviors significantly. This induces us to

Software Cracking and Protection | 579

consider a market in which consumers are horizontally differentiated in accor-
dance with social norms of copyright protection. Consumers with more (less)
accordance with social norms of copyright protection prefer genuine (cracked)
software subjectively.

Software markets usually have some common features. First, consumers
gain more utility from specific software when the number of consumers using
compatible products increase. Second, consumers using cracked software usu-
ally cannot communicate with all of the consumers using genuine software,
and vice versa. If genuine and cracked software become more compatible, then
consumers are more-motivated to use cracked software which induces software
producer to increase protection to strive for its market share. On the other hand,
an increase in compatibility between genuine and cracked software enables con-
sumers buying genuine software to enjoymore network benefits from those using
cracked softwarewhich reduces software producer’smotivations for strivingmar-
ket share. Hence, software producer has an incentive to reduce protection. From
the above demonstrations, partial compatibility between genuine and cracked
software is not only a phenomenon commonly-observed in computer industries,
but also plays a crucial role in software producer’s protection decision. We are
thus motivated to construct a software market exhibiting network externalities
with considering partial compatibility between genuine and cracked software to
analyze the monopolistic producer’s software protection behaviors as well as the
determinants of existence of software cracking and the number of consumers
using cracked software. It is worth demonstrating our setup with the document
processing softwaremarket in whichMicrosoft (MS) Office ownsmonopoly power
evidently. This market has the following features. First, consumers may decide
whether to purchase genuine MS Office or use cracked MS Office illegally. Sec-
ond, if consumers decide to use cracked MS Office illegally, then they not only
need to devote enough effort to crack software successfully which are deter-
mined by the degrees of software protection imposed byMS, but also suffer utility
loss from using cracked MS Office due to an inferior quality. Third, consumers
using cracked MS Office generally cannot fully communicate with those using
genuine MS Office. In other words, genuine and cracked MS Office are partially
compatible.

Our research presents the following results. First, whennetwork externalities
are relatively weak, the monopolistic producer would set a degree of protection
which induces existence of software cracking to enhance consumers’ willing-
ness to pay for genuine software by improving network benefits. On the contrary,
if network externalities are sufficiently strong, then the monopolistic producer
would set a degree of protection which stop software cracking completely. This
implies that stopping software cracking is not possible without network effects.

580 | C.-H. Chou

It is worth mentioning that the lower limits of strength of network externalities
of non-existence of software cracking increase with compatibility between gen-
uine and cracked software which implies that reducing compatibility may lessen
possibilities of existence of software cracking. We also show that if utility loss
from using cracked software is sufficiently small with software protection costs
being sufficiently large or the degrees of compatibility between software being
sufficiently high, then cracked software may coexist with genuine software no
matter what the strength of network externalities is which means that strong
network externalities cannot stop software cracking in these two situations. Sec-
ond, if utility loss from using cracked software is serious (mild), then stronger
network externalities or reducing compatibility between genuine and cracked
software induce monopolistic producer to set a higher (lower) degree of software
protection; as a consequence, strengthening (weakening) network externalities
or lowering (raising) compatibility may reduce the number of consumers using
cracked software and increase software producer’s profits under this situation.
To sum up the above findings, even though reducing compatibility may lessen
possibilities of existence of software cracking; it does not necessarily reduce the
number of consumers using cracked software. In other words, lowering compat-
ibility between genuine and cracked software exerts different effects in lessening
possibilitiesof existenceof softwarecracking and reducing thenumberof consumers
using cracked software. Finally, we show that if genuine and cracked software are
highly compatible or network externalities are relatively weak, then the monop-
olistic producer tends to over-protect software which implies that the number of
consumers buying genuine software under the market equilibrium exceeds that
under the social optimum.

The remainder of the paper is organized as follows. Section 2 introduces the
basic model. Section 3 analyzes the monopolistic manufacturer’s software pro-
tection decision. Section 4 examines social optimal software protection. Section 5
concludes and discusses robustness of our results which are derived under a
specific utility function.

2 The Model
This section proposes a model in which the monopolistic software producer and
consumers act to maximize profits and utility respectively. Consumers will base
software adoption decisions on their expected network sizes of each software.
To be specific, we assume that consumers must make their adoption decisions
before the actual network sizes are known. In otherwords, given that the expected
number of consumers buying genuine software and using cracked software are

Software Cracking and Protection | 581

xeg and xec respectively, consumers make their software adoption decisions to
maximize their utility.

Consumers may either buy genuine software or use cracked one illegally.
Consumers’ utility levels are determined by network benefits, software adoption
costs, and their subjective preferences for genuine and cracked software which
depend on the extents of accordance with social norms of copyright protection.

First, regarding network benefits, consumers gain more utility from software
when the number of consumers using compatible products increase. We assume
that network benefits increasewith the number of consumers adopting (partially)
compatible software linearly. Genuine and cracked software are partially compat-
ible, and the degree of compatibility is 0 < 𝛽 < 1. From this viewpoint, given that
the expected number of consumers buying genuine software and using cracked
one are xeg and xec respectively, if consumers buy genuine software, then they gain

network benefits, 𝛼
(
xeg + 𝛽xec

)
. On the other hand, consumers may gain network

benefits, 𝛼
(
xec + 𝛽xeg

)
from using cracked software. Here, 𝛼 < 1 reflects strength

of network externalities.
The second determinant is software adoption costs. If consumers purchase

genuine software, then they pay software producer the price, pg. Conversely, if
consumers use cracked software illegally, then they suffer two kinds of utility
losses. The first kind of utility loss comes from devoting effort for cracking soft-
ware successfully which intuitively increase with degrees of software protection.
To be specific, if the monopolistic producer sets the degree of software protection
to be sg, then consumers suffer disutility rsg to crack software successfully. Here,
r > 0 is marginal disutility of cracking more-protected software. A larger rmeans
that cracking more-protected software causes a drastic increase in disutility. A
smaller r alternativelymeans that crackingmore-protected software causes amild
increase indisutility. The secondkindof utility loss results froman inferior quality
of cracked software. In real life, due to some unexpected problems, consumers
usually feel that the malfunction risk of cracked software is higher than that of
genuine software. Moreover, software producer may use some strategic tools to
affect the extents of utility loss from using cracked software such as providing
excellent after-sale services to the consumers buying genuine software exclu-
sively to make consumers suffer serious utility loss from using cracked software.
Intuitively, cracked software is unattractive if consumers would suffer serious
utility loss from using it which may induce software producer to invest less in
protection. From this viewpoint, the extents of utility loss from using cracked
software affect software producer’s protection decision essentially. Hence, we
consider that consumers suffer utility loss, f from using cracked software in our
analysis.

582 | C.-H. Chou

The third determinant is consumers’ subjective preferences for genuine and
cracked software which are determined by the extents of accordance with social
norms of copyright protection. We assume that consumers are horizontally dif-
ferentiated in accordance with social norms of copyright protection, and are
uniformly distributed on the interval [0, 1] with density 1. Let t denote consumers’
locations which represent their accordance with social norms of copyright pro-
tection. Genuine and cracked software are located at t = 0 and t = 1 respectively.
Consumers with smaller t have more accordance with social norms of copyright
protection and prefer genuine software subjectively. Conversely, consumers with
larger t have less accordance with social norms of copyright protection and prefer
cracked software subjectively.1

From the above demonstrations, the utility function of a consumer located at
t can be written as follows.

u (t) =
⎧⎪⎨⎪⎩
u+ 𝛼

(
xeg + 𝛽xec

)
− pg − t if he buys genuine software,

u+ 𝛼
(
xec + 𝛽xeg

)
− (rsg + f)− (1− t) if he uses cracked software.

(1)
Here, u is the standalone utility of software which is sufficiently large that

the market is covered.
The participants’ interactions take place in the following three-stage game.

In the first stage, the monopolistic producer determines a degree of software
protection and incurs investment costs. In the second stage, the monopolist sets
a price of genuine software to maximize profits. In the third stage, consumers
decide whether to buy genuine software or use cracked one. In the following
analysis, we use backward induction to characterize the subgame-perfect Nash
equilibrium.

The marginal costs of producing genuine software are normalized to be 1,
and investment costs for software protection is cs2g if software producer sets the
degree of protection to be sg. In order to satisfy the second-order conditions and
the number of consumers buying genuine software is positive, parameters are
assumed to satisfy the following conditions.
(A1) f > 𝛼 (1− 𝛽).
(A2) c > r2

8[1−𝛼(1−𝛽)] .

1 The literature of public finance includingde Juan, Lasheras, andMayo (1994), Alm,McCelland,
and Schulze (1999), and Wenzel (2005) discussed tax compliance from the viewpoint of social
norms.

Software Cracking and Protection | 583

(A1) and (A2)mean that utility loss fromusing cracked software is sufficiently
serious, and software protection costs are sufficiently high respectively.

It is worth demonstrating our setup with the documents processing software
market in which MS Office owns monopoly power evidently. u is the standalone
utility of MS Office, xeg and xec are the expected number of consumers buying
genuine MS Office and using cracked MS Office respectively. 0 < 𝛽 < 1 is the
degree of compatibility between genuine and cracked MS Office. If consumers
decide to use cracked MS Office, then they suffer disutility, rsg to crack MS Office
successfully; and utility loss, f due to an inferior quality and lack of after-sales
supports cracked MS Office.

3 Equilibrium Analysis
Following Katz and Shapiro (1985) and Economides (1996), we adopt fulfilled
expectations equilibrium which means that the expected number of consumers
using each kind of software are the realized ones.

From (1), the consumer who is indifferent between buying genuine software
and using cracked one is derived as follows.

xg ≡ t =
1− pg +

(
rsg + f

)
− 𝛼

(
xec + 𝛽xeg

)
+ 𝛼

(
xeg + 𝛽xec

)
2 . (2a)

xc ≡ 1− t = 1−
1− pg +

(
rsg + f

)
− 𝛼

(
xec + 𝛽xeg

)
+ 𝛼

(
xeg + 𝛽xec

)
2 . (2b)

Inserting xeg = xg and xec = xc into (2a) and (2b), and solving them simultane-
ously yield the number of consumers buying genuine software and using cracked
one as follows respectively.

xg =
(rsg − pg + f + 𝛼𝛽 − 𝛼 + 1)

2[1− 𝛼 (1− 𝛽)]
. (3a)

xc = 1−
(
rsg − pg + f + 𝛼𝛽 − 𝛼 + 1

)
2 [1− 𝛼 (1− 𝛽)]

(3b)

It is worth noting that the above demand functions are valid only when
0 < xg < 1. Moreover, 𝛼 < 1 ensures stability of the demand functions.

Next, we analyze the situation under which no consumers decide to use
cracked software (a corner solution) by examining software adoption decision

584 | C.-H. Chou

of the consumer with least accordance with social norms of copyright protection
(t = 1).

u (1) =
⎧⎪⎨⎪⎩
u+ 𝛼

[
xeg + 𝛽

(
1− xeg

)]
− pg − 1 if he buys genuine software,

u+ 𝛼
[(
1− xeg

)
+ 𝛽xeg

]
−
(
rsg + f

)
if he uses cracked software.

Given that the monopolistic producer sets the degree of protection and price
of genuine software to be sg and pg respectively, and the expected number of
consumers buying genuine software and using cracked software are xeg and xec
respectively, if the following condition is satisfied, then the consumer with t = 1
would buy genuine software rather than use cracked onewhich implies that there
are no consumers using cracked software. In other words, software cracking is
stopped completely under this situation.

𝛼
[
xeg + 𝛽

(
1− xeg

)]
− pg − 1 > 𝛼

[(
1− xeg

)
+ 𝛽xeg

]
−
(
rsg + f

)
. (4)

We analyze the monopolistic software producer’s pricing behaviors. From
demand function of genuine software derived in (3a), the monopolistic software
producer’s profit function can be written as follows

𝜋g =
(
pg − 1

) (
rsg − pg + f + 𝛼𝛽 − 𝛼 + 1

)
2 [1− 𝛼 (1− 𝛽)]

− cs2g (5)

Solving the first-order condition yields monopolistic producer’s optimal
pricing of genuine software as follows.

pg =
(
rsg + f + 𝛼𝛽 − 𝛼 + 2

)
2 . (6)

We can analyze the impacts the degrees of software protection and utility
loss from using cracked software on prices of genuine software which are stated
in the following lemma.

Lemma.
(1) dpg

dsg
> 0.

(2) dpg
d f > 0.

First, regarding the impacts of protection degrees of genuine software on
its price, if themonopolistic producer increases protection, then consumersmust
suffermoredisutility to crack software successfully, andarewilling topayahigher

Software Cracking and Protection | 585

price for genuine software. Hence, the monopolistic producer has an incentive to
sell more-protected software for a higher price under this situation.

Next, we discuss the impacts of utility losses from using cracked software on
prices of genuine software. Consumers are similarly willing to pay a higher price
for genuine software if theywould suffermore utility loss fromusing cracked soft-
ware, which induces the monopolistic producer to ask a higher price for genuine
software under this situation. This result implies that providing more after-sale
services to consumers buying genuine software may induce the monopolistic
producer to sell genuine software for a higher price.

Inserting (6) into (3a) yields thenumber of consumersusing genuine software
as follows under the monopolistic producer setting degree of software protection
to be sg.

xg =
(
rsg + f + 𝛼𝛽 − 𝛼

)
4 [1− 𝛼 (1− 𝛽)]

. (7a)

Hence, the number of consumers using cracked software is

xc = 1−
(
rsg + f + 𝛼𝛽 − 𝛼

)
4 [1− 𝛼 (1− 𝛽)]

. (7b)

From (7a), dxg
dsg

= r
4[1−𝛼(1−𝛽)] > 0. This means that raising protection enables

software producer to gain a larger number of consumers buying genuine software.
Inserting (6) into (5) derivesmonopolistic software producer’s profit function

as follows.

𝜋g
(
sg
)
=

(
rsg + f + 𝛼𝛽 − 𝛼

)2
8 [1− 𝛼 (1− 𝛽)]

− cs2g (8)

Solving the first-order condition of the above profit function yields the
monopolistic producer’s optimal software protection as follows.

s∗g =
(𝛼𝛽 − 𝛼 + f) r

−r2 + 8c
[
1− 𝛼(1− 𝛽)

] > 0. (9)

Hence, the monopolistic producer’s profit can be derived as follows which is
positive due to assumption (A2).

𝜋∗
g = c (𝛼𝛽 − 𝛼 + f)2

−r2 + 8c[1− 𝛼(1− 𝛽)] > 0. (10)

Inserting (9) into (7a) and (7b) derives the equilibrium number of consumers
buying genuine software and using cracked one as follows respectively.

x∗g =
2c (𝛼𝛽 − 𝛼 + f)

−r2 + 8c[1− 𝛼(1− 𝛽)] > 0. (11a)

586 | C.-H. Chou

x∗c = 1− 2c (f + 𝛼𝛽 − 𝛼)
−r2 + 8c[1− 𝛼(1− 𝛽)] =

−r2 − 2c f + 6𝛼𝛽c− 6𝛼c+ 8c
−r2 + 8c[1− 𝛼(1− 𝛽)] . (11b)

From (11a),
1− x∗g =

−r2 − 2c f + 6𝛼𝛽c− 6𝛼c+ 8c
−r2 + 8c[1− 𝛼(1− 𝛽)] . (11c)

From (11c), 0 < x∗g < 1 if and only if −r2 − 2cf + 6𝛼𝛽c− 6𝛼c+ 8c > 0. This
implies that if −r2 − 2cf + 8c < 0, then −r2 − 2cf + 6𝛼𝛽c− 6𝛼c+ 8c < 0 for all
𝛼 which implies all consumers would buy genuine software in this situation. This
means that if −r2 − 2cf + 8c < 0, no matter what the strength of network exter-
nalities is, cracked software cannot coexist with genuine software in the market.
Alternatively, if −r2 − 2cf + 8c > 0, then the equilibrium outcome is determined
by the sign of −r2 − 2cf + 6𝛼𝛽c− 6𝛼c+ 8c.
(1) If −r2 − 2cf + 6𝛼𝛽c− 6𝛼c+ 8c > 0, then 0 < x∗g < 1 which means that

cracked software may coexist with genuine software in the market.
(2) If −r2 − 2cf + 6𝛼𝛽c− 6𝛼c+ 8c < 0, then x∗c = 0 which means that cracked

software is stopped.

The above discussions imply that the strength of network externalities, 𝛼 plays a
role inexistenceof softwarecrackingunder−r2 − 2cf + 8c > 0.Hence,weassume
−r2 − 2cf + 8c > 0 in the following analysis in existence of software cracking as
well as its impacts on market performances.

Inserting s∗g into (6) yields the price of genuine software price as follows.

p∗g = 1+ 4c(𝛼𝛽 − 𝛼 + 1) (𝛼𝛽 − 𝛼 + f)
−r2 + 8c[1− 𝛼(1− 𝛽)] > 1. (12)

Proposition 1.
(1) If utility loss from using cracked software is serious (f > 1− r2

8c), then
ds∗g
d𝛼 > 0

and ds∗g
d𝛽 < 0.

(2) If utility loss from using cracked software is mild (f < 1− r2
8c), then

ds∗g
d𝛼 < 0

and ds∗g
d𝛽 > 0.

(3) ds∗g
d f > 0.

Proof. See Appendix I.

First,we examine the impacts of strengthof network externalities on software
protection. Strengthening network externalities arises two effects on software
producer’s protection decision. First, given the network size of genuine software,

Software Cracking and Protection | 587

stronger network externalities improve network benefits and consumers’ willing-
ness to pay for genuine software which induces the monopolistic producer to
raise protection to sell genuine software for a higher price. Second, stronger net-
work externalities encourage themonopolistic producer to strive formarket share
which induces it to reduce protection to sell genuine software for a lower price.
The above results show that if utility loss from using cracked software is serious,
then the former effect offsets the latter one and the degrees of software protection
increase with strength of network externalities. On the contrary, if utility loss
from using cracked software is mild, then the former effect is offset by the latter
one. Hence, the degrees of software protection decrease with strength of network
externalities.

Second, we discuss the impacts of compatibility between genuine and
cracked software on software protection. Raising compatibility between genuine
and cracked software similarly arises two effects on software producer’s protec-
tion decision. First, an increase in compatibility enables cracked software users
to free-ride genuine software buyers more and discourages the monopolistic pro-
ducer to expand market share which induces it to reduce software protection
which incurs less protection costs. Second, raising compatibility enables genuine
software buyers to free-ride cracked software users more and enhances network
benefits of genuine softwarewhich induces themonopolistic producer to increase
software protection to set a higher price of genuine software. The above results
show that if utility loss from using cracked software is serious, then the former
effect offsets the latter one and the degrees of software protection decrease with
compatibility between genuine and cracked software. Conversely, if utility loss
from using cracked software is mild, then the former effect is offset by the lat-
ter one. Hence, the degrees of software protection increase with compatibility
between genuine and cracked software.

Third, we analyze the impacts of utility loss from using cracked software
on software protection. An increase in utility loss from using cracked software
also arises two effects on software producer’s protection decision. First, cracked
software becomes less attractive and software producer has an incentive to reduce
protection which incurs less protection costs. Second, consumers are willing to
pay a higher price for genuine software which induces software producer to raise
software protection to increase prices. The above result indicates that the latter
effect offsets the former one; as a consequence, degrees of software protection
increase with utility loss from using cracked software.

Inserting (9), (11a), and (12) into (4) yields the condition of non-existence of
software cracking as follows.

2(r2 + 2c f − 6𝛼𝛽c+ 6𝛼c− 8c)
−r2 + 8c[1− 𝛼(1− 𝛽)] > 0.

588 | C.-H. Chou

Due to the denominator being positive, the above condition implies that
non-existence of software cracking is an equilibrium outcome if and only if(
r2 + 2c f − 6𝛼𝛽c+ 6𝛼c− 8c

)
> 0. Hence, we state the equilibrium outcomes

about existence of software cracking as the following proposition.

Proposition 2.
(1) If 𝛼 <

−r2+8c−2c f
6c(1−𝛽) , then 0 < x∗c < 1. In other words, existence of software

cracking is an equilibrium outcome.
(2) If 𝛼 >

−r2+8c−2c f
6c(1−𝛽) , then x∗c = 0. In other words, non-existence of software

cracking is an equilibrium outcome.
(3) Cracked software may coexist with genuine software no matter what the

strength of network externalities is under the following two circumstances.

(3.1) Utility loss from using cracked software is sufficiently small and soft-
ware protection costs are sufficiently high i.e. f < 1+ 3𝛽 − r2

2c and
c > r2

2(1−𝛼) .
(3.2) Utility loss from using cracked software is sufficiently small with

software protection costs being moderate and the degrees of com-
patibility between software being sufficiently high i.e. f < 1+ 3𝛽 − r2

2c
and r2

2(1+3𝛽) < c < r2
2(1−𝛼) and 𝛽 >

r2−2c(1−𝛼)
2c(3+𝛼) .

Proof. See Appendix II.

Themonopolistic software producer confronts the trade-off between improv-
ing network benefits of genuine software and suffering profit loss due to existence
of software cracking. When network externalities are relatively weak, software
producer would set a degree of protection which induces existence of software
cracking to enhance network benefits of genuine software rather than sets a
degree of protection which makes software cracking disappear.

Next, we discuss the situation with strong network externalities, 𝛼 >
−r2+8c−2c f
6c(1−𝛽) . Given that consumers’ expected number of consumers buying gen-

uine software and using cracked software are fulfilled
(
xeg = x∗g , xec = x∗c

)
, all

consumers would purchase genuine software rather than use cracked one. In
other words, the monopolistic producer sets a degree of protection, s∗g which
stops software cracking completely under this situation. This result also implies
that it is not possible to stop software cracking without network effects.

Third, if consumers suffermildutility loss fromusing cracked softwareaswell
as software protections costs being sufficiently high or the extent of compatibility

Software Cracking and Protection | 589

between software being sufficiently strong, then cracked software may coexist
with genuine software no matter what the strength of network externalities is. In
other words, strong network externalities cannot stop software cracking in these
two circumstances.

From Proposition 2, compatibility between genuine and cracked software,
software protection costs, and utility loss from using cracked software affect
existence of software cracking through the lower limit of strength of network
externalities of non-existence of software cracking. In other words, the above
three factors affect existence of software cracking indirectly.

d
d𝛽

−r2 + 8c− 2c f
6c(1− 𝛽) = −r2 + 8c− 2c f

6c(1− 𝛽)2 > 0. (13a)

d
d f

−r2 + 8c− 2c f
6c(1− 𝛽) = − 1

3(1− 𝛽) < 0. (13b)

d
dc

−r2 + 8c− 2c f
6c(1− 𝛽) = r2

6c2(1− 𝛽) > 0. (13c)

The above derivations indicate that the lower limit of strength of network
externalities for non-existence of software cracking increases with compatibil-
ity between genuine and cracked software and software protection costs, but
decreases in utility loss from using cracked software. This implies that reducing
compatibility may lessen possibilities of existence of software cracking. However,
it is worth mentioning that the impacts of reducing compatibility on the number
of consumers using cracked software depend on utility loss from using cracked
software which are presented in the following analysis.

The above derivations also indicate that reducing software protection costs
or increasing utility loss from using cracked software may lessen possibilities of
existence of software cracking as well.

Next, we discuss the determinant of the number of consumers using cracked
software. From (11b),

dx∗c
d𝛼 = −2c(1− 𝛽)(r2 − 8c+ 8c f)

{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
< 0 if f > 1− r2

8c .

> 0 if f < 1− r2
8c .

(14a)

dx∗c
d𝛽 = 2𝛼c(r2 − 8c+ 8c f)

{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
> 0 if f > 1− r2

8c .

< 0 if f < 1− r2
8c .

(14b)

dx∗c
dc = 2r2(𝛼𝛽 − 𝛼 + f)

{r2 − 8c[1− 𝛼(1− 𝛽)]}2 > 0. (14c)

dx∗c
d f = 2c

{r2 − 8c[1− 𝛼(1− 𝛽)]} < 0. (14d)

590 | C.-H. Chou

From the above derivations, the impacts of strength of network externali-
ties and compatibility between genuine and cracked software on the number of
consumers using cracked software are stated as the following proposition.

Proposition 3.
(1) If f > 1− r2

8c , then
dx∗c
d𝛼 < 0 and dx∗c

d𝛽 > 0.
(2) If f < 1− r2

8c , then
dx∗c
d𝛼 > 0 and dx∗c

d𝛽 < 0.

First, we discuss the impacts of strength of network externalities on the
number of consumers using cracked software.

dx∗c
d𝛼 = 𝜕xc

𝜕𝛼
+ 𝜕xc

𝜕sg
ds∗g
d𝛼 . (15)

From (7b),

𝜕xc
𝜕𝛼

= −
(1− 𝛽)

(
rs∗g + f − 1

)
4[1− 𝛼(1− 𝛽)]2

⎧⎪⎨⎪⎩
< 0 if f > 1− r2

8c .

> 0 if f < 1− r2
8c .

(16a)

𝜕xc
𝜕sg

= − r
4[1− 𝛼(1− 𝛽)] < 0. (16b)

Here, from (9),

(
rs∗g + f − 1

)
= (𝛼𝛽 − 𝛼 + 1)

(
r2 + 8c f − 8c

)
−r2 + 8c[1− 𝛼(1− 𝛽)]

⎧⎪⎨⎪⎩
> 0 if f > 1− r2

8c
< 0 if f < 1− r2

8c

(17)

Stronger network externalities arise direct and indirect effects on the number
of consumers using cracked software. When utility loss from using cracked soft-
ware is serious, stronger network externalities reduce the number of consumers
using cracked software directly. On the other hand, due to raising software pro-
tection, stronger network externalities reduce the number of consumers using
cracked software indirectly as well. As a consequence, the number of consumers
using cracked software decrease with the extents of network externalities. From
this viewpoint, strengthening network externalities may reduce software crack-
ing under this situation. Conversely, if consumers suffer mild utility loss from
using cracked software, then strengthening network externalities yields more
consumers using cracked software.

Software Cracking and Protection | 591

Next, we study the impacts of compatibility between genuine and cracked
software on the number of consumers using cracked software.

dx∗c
d𝛽 = 𝜕xc

𝜕𝛽
+ 𝜕xc

𝜕sg
ds∗g
d𝛽 . (18)

From (7b),

𝜕xc
𝜕𝛽

=
𝛼
(
rs∗g + f − 1

)
4[1− 𝛼(1− 𝛽)]2

⎧⎪⎨⎪⎩
> 0 if f > 1− r2

8c .

< 0 if f < 1− r2
8c .

(19)

Raising compatibility similarly arises direct and indirect effects on the num-
ber of consumers using cracked software. When utility loss from using cracked
software is serious, raising compatibility yields more consumers using cracked
software directly. On the other hand, due to reducing software protection, rais-
ing compatibility increases the number of consumers using cracked software
indirectly as well. Hence, the number of consumers using cracked software
increase with compatibility between genuine and cracked software. This implies
that reducing compatibility may reduce software cracking under this situation.
Conversely, if consumers suffer mild utility loss from using cracked software,
then raising compatibility may reduce the number of consumers using cracked
software.

As demonstrated above, reducing compatibility may lessen possibilities of
existence of software cracking. However, from Proposition 3, the impacts of
reducing compatibility on the number of consumers using cracked software
are dependent on utility loss from using cracked software. The second part of
Proposition 3 further indicates that reducing compatibility may yield more con-
sumers using cracked software when utility loss from using cracked software is
mild. From this viewpoint, reducing compatibility exerts distinct effects on pos-
sibilities of existence of software cracking and the number of consumers using
cracked software.

(14c) and (14d) deliver intuitive results that the number of consumers using
cracked software increasewith software protection costs and decreasewith utility
loss from using cracked software respectively.

We close our analysis about firms’ behaviors with examining the impacts of
strength of network externalities and compatibility between genuine and cracked
software on software producer’s profits.

From (10), it is straightforward to derive the following results.

592 | C.-H. Chou

d𝜋∗
g

d𝛼 = 2c (1− 𝛽) (𝛼𝛽 − 𝛼 + f) [r2 − 4c (2− 𝛼 + 𝛼𝛽 − f)]
{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
> 0 if f > 2− 𝛼 + 𝛼𝛽 − r2

4c .

< 0 if f < 2− 𝛼 + 𝛼𝛽 − r2
4c .

(20a)

d𝜋∗
g

d𝛽 = −2𝛼c (𝛼𝛽 − 𝛼 + f) [r2 − 4c (2− 𝛼 + 𝛼𝛽 − f)]
{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
< 0 if f > 2− 𝛼 + 𝛼𝛽 − r2

4c .

> 0 if f < 2− 𝛼 + 𝛼𝛽 − r2
4c .

(20b)

We state comparative statics of software producer’s profit as Proposition 4. It
is worth noting that the critical value indicated in the above expressions does not
contradict with assumption (A1). Moreover, the condition f > 2− 𝛼 + 𝛼𝛽 − r2

4c
presented in Proposition 4 is compatible with (A1) as well as−r2 + 8c− 2cf > 0.2

Proposition 4.
(1) If utility loss from using cracked software is serious (f > 2− 𝛼 + 𝛼𝛽 − r2

4c),
then d𝜋∗

g
d𝛼 > 0 and d𝜋∗

g
d𝛽 < 0.

(2) If utility loss from using cracked software is mild (f < 2− 𝛼 + 𝛼𝛽 − r2
4c), then

d𝜋∗
g

d𝛼 < 0 and d𝜋∗
g

d𝛽 > 0.

If utility loss from using cracked software is serious, from the first part
of Proposition 3, strengthening network externalities or lowering compatibility
between genuine and cracked software may reduce the number of consumers
using cracked software; as a consequence, software producer’s profits increase
with strength of network externalities, but decrease with compatibility between
genuine and cracked software under this situation. On the other hand, if util-
ity loss from using cracked software is mild, then software producer’s profits
converselydecreasewith strengthof network externalities, but increasewith com-
patibility between genuine and cracked software due to an increase in number of
consumers using cracked software under this situation.

2 The proof is offered in Appendix III.

Software Cracking and Protection | 593

4 Social Welfare
This section discusses social desirability of software protection. In the follow-
ing analysis, we consider that in the first stage, a social planner sets a degree
of software protection to maximize social welfare which is defined to be the
sum of software manufacturer’s profit and consumers’ surplus. The participants’
behaviors in stage 2 and stage 3 remain unchanged.

From the above derivations, given that degree of software protection is s,
consumers’ surplus can be derived as follows.

cs (s)

=
xg

∫

0

[
u+ 𝛼

(
xg + 𝛽

(
1− xg

))
− pg − t

]
dt +

∫

1

xg

[
u+ 𝛼

((
1− xg

)
+ 𝛽xg

)

− (rs+ f)− (1− t)
]
dt⋅

= u+ 𝛼
(
xg − 𝛽xg + 𝛽

)
xg − pgxg −

x2g
2 + 𝛼

(
1− xg + 𝛽xg

) (
1− xg

)

− (rs+ f)
(
1− xg

)
−
(
1− xg

)
+
(
1
2 −

x2g
2

)
.

= u+ Ω (s)
16[1− 𝛼(1− 𝛽)]2 . (21)

Here,

Ω (s) = r2s2 +
(
−12𝛼2𝛽2r + 24𝛼2𝛽r − 12𝛼2r − 26𝛼𝛽r + 2 fr + 26𝛼r − 16r

)
s

+
(
4𝛼3𝛽3 + 4𝛼3𝛽2 − 12𝛼2𝛽2 f − 20𝛼3𝛽 − 3𝛼2𝛽2 + 24𝛼2𝛽 f + 12𝛼3

+ 38𝛼2𝛽 − 12𝛼2 f − 26𝛼𝛽 f − 35𝛼2 − 16𝛼𝛽 + 26𝛼 f + f 2 + 32𝛼 − 16 f − 8
)
.

Hence, social welfare function can be derived as follows.

𝑤 (sw) = u+ Ω(sw)
16[1− 𝛼(1− 𝛽)]2 +

(rsw + f + 𝛼𝛽 − 𝛼)2

8[1− 𝛼(1− 𝛽)] − cs2w. (22)

It is worth mentioning that social welfare function is derived under coexis-
tence of genuine and cracked software.

594 | C.-H. Chou

Solving first-order condition yields social optimum degree of software pro-
tection.3

s∗w = − r
(
2𝛼𝛽 f − 2𝛼 f + 3 f − 4𝛼2𝛽2 + 8𝛼2𝛽 − 11𝛼𝛽 − 4𝛼2 + 11𝛼 − 8

)
2𝛼𝛽r2 − 2𝛼r2 + 3r2 − 16𝛼2𝛽2c+ 32𝛼2𝛽c− 32𝛼𝛽c− 16𝛼2c+ 32𝛼c− 16c .

(23)

Proposition 5. If 𝛽 > 1− 2
3𝛼 , then monopolist producer over-protects software.

Proof. See Appendix IV.

From the above analysis, reducing software protection may enhance social
welfare by saving protection costs and reducing prices of genuine software. How-
ever, the monopolistic software producer earns less profits under this situation.
The above proposition indicates that when genuine and cracked software are
highly compatible, gains from reducing protections costs and consumers’ surplus
due to a lower software price offset monopolistic software producer’s profit loss.
Therefore, reducing software protection enhances social welfare under this sit-
uation. It is worth noting that if 𝛼 <

2
3 , then 1− 2

3𝛼 < 0 which implies that the
monopolisticmanufacturer always over-protects genuine softwarewhen network
externalities are relatively weak.

Regarding social optimal number of consumers buying genuine software,
from (7a), dxg

dsg
= r

2[1−𝛼(1−𝛽)] > 0 which means that the number of consumers buy-
ing genuine software increases with degrees of protection. Hence, Proposition 4
implies that if genuine and cracked software is highly compatible or network
externalities are relatively weak, then the number of consumers buying genuine
software under the market equilibrium are excessive. In other words, the number
of consumers using cracked software under market equilibrium are inadequate
for social optimum.

5 Conclusion and Discussions of Robustness
In the past decades, many economists have adopted various approaches to ana-
lyze firms’ software protection behaviors and the impacts of software piracy on
profits. Nevertheless, some phenomena which can be observed frequently in
computer industries have not received much attention so far. First, progress of

3 d2𝑤(sw)
ds2w

= 2𝛼𝛽r2−2𝛼r2+3r2−16𝛼2𝛽2c+32𝛼2𝛽c−32𝛼𝛽c−16𝛼2c+32𝛼c−16c
8[1−𝛼(1−𝛽)]2 < 0.Hence, the second-order condition

is satisfied.

Software Cracking and Protection | 595

hardware technologies and diffusion of computer knowledge have made signif-
icant changes in the patterns of software piracy. Nowadays if consumers decide
to use software illegally, then they would crack genuine software by themselves
rather than purchase pirated one. From this viewpoint, degrees of protection
determine the amount of effort required for cracking software successfully. We
are thus motivated to investigate a monopolistic producer’s software protection
behaviors and examine the determinants of existence of software cracking aswell
as the number of consumers using cracked software.

Our research presents the following results. First, whennetwork externalities
are relatively weak, software producer may set a degree of protection which
induces existence of software cracking as an equilibrium outcome. Conversely,
when network externalities are sufficiently strong, software producer would set a
degree of protection under which software cracking is stopped completely. From
this viewpoint, stoppingsoftware cracking isnotpossiblewithoutnetworkeffects.
We also discover that if utility loss from using cracked is sufficiently small with
software protection costs being sufficiently large or the extent of compatibility
between software being sufficiently strong, then strong network externalities
cannot stop software cracking.

Second, regarding determinants of the number of consumers using cracked
software, if utility loss from using cracked software is serious (mild), then the
number of consumers using cracked software decrease (increase) with extents of
networkexternalities,but increase (decrease)withcompatibilitybetweengenuine
and cracked software. From this viewpoint, strengthening (weakening) network
externalities or reducing (raising) compatibility may reduce software cracking if
consumers suffer serious (mild)utility loss fromusingcrackedsoftware. It isworth
mentioning that even though reducing compatibility may lessen possibilities of
existence of software cracking, but does not necessarily yield fewer consumers
using cracked software. Finally, we show that if genuine and cracked software are
highly compatible or network externalities are relatively weak, then the monop-
olistic producer tends to over-protect software which implies that the number of
consumers buying genuine software under the market equilibrium are excessive.

Finally, we discuss robustness of the findings about existence of software
cracking which are derived under a specific utility function in this paper. The
monopolistic producer confronts trade-off between improving network benefits
of genuine software and suffering profit loss due to existence of software cracking
when setting degrees of software protection. When network effects are relatively
weak, due to an increase in the number of consumers using (partially) compatible
products, existence of software cracking improves consumers’ willingness to pay
for genuine software significantly. Hence, themonopolistic producer sets a degree
of protection to accommodate software cracking under this situation. Conversely,

596 | C.-H. Chou

if networkeffectsare sufficiently strong, thennetworkbenefitsofgenuinesoftware
without software cracking are large enough for producer to set a genuine software
price which maximizes its profit. Hence, the software producer sets a degree of
protection to stop software cracking completely under this situation. From these
demonstrations, we expect that similar effects may be present under a general
setup.

Appendix I. Proof of Proposition 1

(1)
ds∗g
d𝛼 = (1− 𝛽) r[r2 − 8c (1− f)]

{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
> 0 if f > 1− r2

8c .

< 0 if f < 1− r2
8c .

(2)
ds∗g
d𝛽 = − 𝛼r[r2 − 8c (1− f)]

{r2 − 8c[1− 𝛼(1− 𝛽)]}2

⎧⎪⎨⎪⎩
< 0 if f > 1− r2

8c .

> 0 if f < 1− r2
8c .

(3)
ds∗g
d f = r

−r2 + 8c[1− 𝛼(1− 𝛽)] > 0.

Finally,weprove that f > 1− r2
8c which is equivalent to r

2 > 8c(1− f) doesnot
contradictwith (A2) i.e. c > r2

8[1−𝛼(1−𝛽)] which is equivalent to r
2 < 8c [1− 𝛼 (1− 𝛽)].

8c [1− 𝛼 (1− 𝛽)]− 8c (1− f) = 8c (𝛼𝛽 − 𝛼 + f) > 0 due to (A1), i.e. f >

𝛼(1 − 𝛽).
Hence, f > 1− r2

8c does not contradict with (A2), i.e. c >
r2

8[1−𝛼(1−𝛽)] .
In other words, both comparative statics results indicated above could

happen in equilibrium.
This completes the proof. □

Appendix II. Proof of Proposition 2
The proof of the condition of existence of cracked software is offered in the main
text.

First, we prove the condition of stopping software cracking equivalent to
r2 > −2cf + 6𝛼𝛽c− 6𝛼c+ 8cbeing compatiblewith (A2), i.e. c > r2

8[1−𝛼(1−𝛽)] which
is equivalent to r2 < 8c [1− 𝛼 (1− 𝛽)].

8c [1− 𝛼 (1− 𝛽)]− (−2c f + 6𝛼𝛽c− 6𝛼c+ 8c) = 2c (𝛼𝛽 − 𝛼 + f) > 0 due to
(A1), i.e. f > 𝛼(1− 𝛽).

Software Cracking and Protection | 597

Hence, the condition for non-existence of software cracking, 𝛼 >
−r2+8c−2c f
6c(1−𝛽)

is compatible with (A2), i.e. c > r2
8[1−𝛼(1−𝛽)] .

In other words, both existence and non-existence of software cracking could
be an equilibrium outcome.

The proof of the third part is stated as follows.
If the critical strength of network externalities of stopping software cracking

is larger than 1 i.e. −r2+8c−2c f
6c(1−𝛽) > 1, then it is impossible to stop software cracking.

Hence, if f < 1+ 3𝛽 − r2
2c , then cracked software can coexist with genuine

software nomatter what the strength of network externalities is. It is worth noting
that due to utility loss from using cracked software cannot be negative, c > r2

2(1+3𝛽)

must be satisfied for 1+ 3𝛽 − r2
2c > 0.

Moreover, it is necessary to check compatibility between f < 1+ 3𝛽 − r2
2c and

(A1) i.e. f > 𝛼(1− 𝛽).(
1+ 3𝛽 − r2

2c

)
− 𝛼 (1− 𝛽) = −r2 + 2c (1− 𝛼)+ 2𝛽c (3+ 𝛼)

2c

<
−r2 + 8c [1− 𝛼 (1− 𝛽)]

2c .

−r2 + 2c (1− 𝛼)+ 2𝛽c (3+ 𝛼)
2c − −r2 + 8c [1− 𝛼 (1− 𝛽)]

2c = −3 (1− 𝛼) (1− 𝛽) < 0.

Hence, −r2+8c[1−𝛼(1−𝛽)]
2c >

−r2+2c(1−𝛼)+2𝛽c(3+𝛼)
2c which implies that

(
1+ 3𝛽 − r2

2c

)
can be larger or smaller than 𝛼 (1− 𝛽) due to −r2+8c[1−𝛼(1−𝛽)]

2c > 0.
(i) If −r2 + 2c (1− 𝛼) > 0 which is equivalent to c > r2

2(1−𝛼) , then(
1+ 3𝛽 − r2

2c

)
> 𝛼 (1− 𝛽) which implies that f < 1+ 3𝛽 − r2

2c is compatible
with (A1).

(ii) If −r2 + 2c (1− 𝛼) < 0 which is equivalent to c < r2
2(1−𝛼) , and 𝛽 >

r2−2c(1−𝛼)
2c(3+𝛼) ,

then
(
1+ 3𝛽 − r2

2c

)
> 𝛼 (1− 𝛽) which implies that f < 1+ 3𝛽 − r2

2c is com-
patible with (A1).

(iii) If −r2 + 2c (1− 𝛼) < 0 which is equivalent to c < r2
2(1−𝛼) , and 𝛽 <

r2−2c(1−𝛼)
2c(3+𝛼) ,

then
(
1+ 3𝛽 − r2

2c

)
< 𝛼 (1− 𝛽)which implies that f < 1+ 3𝛽 − r2

2c is incom-
patible with (A1).

From the above derivations, cracked software can coexist with genuine soft-
ware no matter what the strength of network externalities is under the following
two circumstances.
(1) c > r2

2(1−𝛼) and f < 1+ 3𝛽 − r2
2c .

598 | C.-H. Chou

(2) r2
2(1+3𝛽) < c < r2

2(1−𝛼) and 𝛽 >
r2−2c(1−𝛼)
2c(3+𝛼) and f < 1+ 3𝛽 − r2

2c .

It is worth mentioning that r2−2c(1−𝛼)
2c(3+𝛼) < 1 due to (A2) i.e. c > r2

8[1−𝛼(1−𝛽)] which
implies that r2 < 8c.

Finally, it is also worth demonstrating the software producer’s behaviors
whenall consumerswouldbuygenuine software rather thanuse cracked software
given that the software producer sells products for p∗g = 1+ 4c(𝛼𝛽−𝛼+1)(𝛼𝛽−𝛼+ f)

−r2+8c[1−𝛼(1−𝛽)] .
If −

(
r2 + 2c f − 6𝛼𝛽c+ 6𝛼c− 8c

)
< 0, given that the expected number of

consumers buying genuine software and using cracked one are fulfilled, all con-
sumers would purchase genuine software rather than use cracked one. This
means that the monopolistic software producer sets a degree of protection,
s∗g =

(𝛼𝛽−𝛼+ f)r
−r2+8c[1−𝛼(1−𝛽)] which may stop software cracking completely.
Hence, the monopolistic software producer’s profit function can be derived

as follows under this situation.

𝜋g =
(
pg − 1

) (
u− pg

)
(1− 𝛼)

.

Solving first-order condition yields optimal pricing of genuine software being
(u+1)
2 .
This completes the proof. □

Appendix III. Compatibility between Condition
in Proposition 4 and (A1) as well as
− r2 + 8c − 2cf > 0
First, we prove that f < 2− 𝛼 + 𝛼𝛽 − r2

4c is compatible with (A1) i.e. f > 𝛼(1− 𝛽).
(2− 𝛼 + 𝛼𝛽 − r2

4c)− 𝛼 (1− 𝛽) = −r2+8c[1−𝛼(1−𝛽)]
4c > 0 due to (A2) i.e. c >

r2
8[1−𝛼(1−𝛽)] .

Hence, f < 2− 𝛼 + 𝛼𝛽 − r2
4c and f > 𝛼(1− 𝛽) are compatible.

Second, −r2 + 8c− 2cf > 0 which is equivalent to f < 4− r2
2c is essentially

an assumption of the analysis in the impacts of software cracking on market
performances. Hence, it is worthwhile to check compatibility between f > 2−
𝛼 + 𝛼𝛽 − r2

4c and f < 4− r2
2c .(

4− r2
2c

)
−
(
2− 𝛼 + 𝛼𝛽 − r2

4c

)
= −r2 − 4𝛼𝛽c+ 4𝛼c+ 8c

4c

>
−r2 + 8c [1− 𝛼 (1− 𝛽)]

4c > 0.

Software Cracking and Protection | 599

Hence, f < 4− r2
2c and f >

(
2− 𝛼 + 𝛼𝛽 − r2

4c

)
are compatible.

This completes the proof. □

Appendix IV. Proof of Proposition 5
From (9) and (22),

s∗w − s∗g =
2r[1− 𝛼(1− 𝛽)]Σ

(
r2
)

8{r2 − 8c[1− 𝛼(1− 𝛽)]}[1− 𝛼(1− 𝛽)]2 d
2𝑤(s)
ds2

.

Here,

Σ
(
r2
)
= (3𝛼𝛽 − 3𝛼 + 4) r2 + 4c

(
f − 6𝛼2𝛽2 + 12𝛼2𝛽2 − 13𝛼𝛽 − 6𝛼2 + 13𝛼 − 8

)
.

Both (𝛼𝛽 − 𝛼 + 1) and denominator are positive. Hence,

sign
[
s∗w − s∗g

]
= sign

[
Σ
(
r2
)]
.

From Proposition 1, genuine and cracked software coexists only when r2 <
6𝛼𝛽c− 6𝛼c+ 8c− 2cf . In other words, the above social welfare function is valid
only when r2 < 6𝛼𝛽c− 6𝛼c+ 8c− 2cf .

From (A1), 3𝛼𝛽 − 3𝛼 + 4 > 0. Therefore,

Σ
(
r2
)
< Σ (6𝛼𝛽c− 6𝛼c+ 8c− 2c f) = −2c (𝛼𝛽 − 𝛼 + f) (3𝛼𝛽 − 3𝛼 + 2) .

Hence, if (3𝛼𝛽 − 3𝛼 + 2) > 0, then Σ
(
r2
)
< Σ (6𝛼𝛽c− 6𝛼c+ 8c− 2c f) < 0.

In other words, if (3𝛼𝛽 − 3𝛼 + 2) > 0, then Σ
(
r2
)
is always negative.

Therefore, when (3𝛼𝛽 − 3𝛼 + 2) > 0, s∗w < s∗g.
This implies that if 𝛽 > 1− 2

3𝛼 , then s
∗
w < s∗g.

This completes the proof. □

References
Alm, J., G. McCelland, and W. Schulze. 1999. ‘‘Changing the Social Norm of Tax Compliance by

Voting.’’ Kyklos 52: 141−71..
Besen, S., and S. Kirby. 1989. ‘‘Private Copying, Appropriability, and Optimal Copying

Royalties.’’ The Journal of Law and Economics 32: 255−80..
Conner, K., and R. Rulmet. 1991. ‘‘Software Piracy: An Analysis of Protection Strategies.’’

Management Science 37: 125−39..
de Juan, A., M. Lasheras, and R. Mayo. 1994. ‘‘Voluntary Tax Compliant Behavior of Spanish

Income Tax Payers.’’ Public Finance 49: 90−105.

600 | C.-H. Chou

Economides, N. 1996. ‘‘Network Externalities, Complementarities, and Invitations to Enter.’’
European Journal of Political Economy 12: 211−33..

Inceoglu, F. 2015. ‘‘Copyright Protection and Entry Deterrence.’’ Information Economics and
Policy 32: 38−45..

Jain, S. 2008. ‘‘Digital Piracy: A Competitive Analysis.’’Management Science 27: 610−26..
Johnson, W. 1985. ‘‘The Economics of Copying.’’ Journal of Political Economy 93: 158−74..
Katz, M., and C. Shapiro. 1985. ‘‘Network Externalities, Competition, and Compatibility.’’ The

American Economic Review 75: 424−40.
Liebowitz, S. 1985. ‘‘Copyright and Indirect Appropriability: Photocopying of Journals.’’ Journal

of Political Economy 93: 945−57..
Novos, I., and M. Waldman. 1984. ‘‘The Effects of Increased Copyright Protection: An Analytical

Approach.’’ Journal of Political Economy 92: 236−46..
Rasch, A., and T. Wenzel. 2013. ‘‘Piracy in a Two-Sided Software Market.’’ Journal of Economic

Behavior & Organization 88: 78−89..
Shy, O., and J. Thisse. 1999. ‘‘A Strategic Approach to Software Protection.’’ Journal of

Economics and Management Strategy 8: 163−90..
Slive, J., and D. Bernhardt. 1998. ‘‘Pirated for Profit.’’ Canadian Journal of Economics 31:

886−99..
Takayama, L. 1994. ‘‘The Welfare Implications of Unauthorized Reproduction of Intellectual

Property in the Presence of Network Externalities.’’ The Journal of Industrial Economics
42: 155−66.

Wenzel, M. 2005. ‘‘Motivation or Rationalization? Causal Relations between Ethics, Norms and
Tax Compliance.’’ Journal of Economic Psychology 26: 491−508..

Yoon, K. 2002. ‘‘The Optimal Level of Copyright Protection.’’ Information Economics and Policy
14: 327−48..

	1 Introduction
	2 The Model
	3 Equilibrium Analysis
	4 Social Welfare
	5 Conclusion and Discussions of Robustness
	5 Proof of Propositiontnqxa0;1
	5 Proof of Propositiontnqxa0;2
	5 Compatibility between Condition in Propositiontnqxa0;4 and (A1) as well as tnqx2212; r2 tnqx2b; 8c tnqx2212; 2cf tnqx3e; 0
	5 Proof of Propositiontnqxa0;5

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

