Abstract
Phosphate glasses are novel amorphous biomaterials due to their fully resorbable characteristics, with controllable degradation profiles. In this study, phosphate glasses containing titanium and/or iron were identified to exhibit sufficiently matched thermal properties (glass transition temperature, thermal expansion coefficient and viscosity) which enabled successful co-extrusion of glass billets to form a core/clad preform. The cladding composition for the core/clad preforms were also reversed. Fe clad and Ti clad fibres were successfully drawn with an average diameter of between 30~50 μm. The average cladding annular thickness was estimated to be less than 2 μm. Annealed core/clad fibres were degraded in PBS for a period of 27 days. The strength of the Fe clad fibres appeared to increase from 303 ± 73 MPa to 386 ± 45 MPa after nearly 2 weeks in the dissolution medium (phosphate buffered solution) before decreasing by day 27. The strength of the Ti clad fibres revealed an increase from 236 ± 53 MPa to 295 ± 61 MPa when compared at week 3. The tensile modulus measured for both core/clad fibres ranged between 51 GPa to 60 GPa. During the dissolution study, Fe clad fibres showed a peeling mechanism compared to the Ti clad fibres.
References
[1] Knowles J.C., Phosphate Based Glasses for Biomedical Applications, J. Mater. Chem. 2003, 13, 2395-2401 10.1039/b307119gSearch in Google Scholar
[2] Ahmed I., Parsons A.J., Palmer G., Knowles J.C., Walker G.S., Rudd C.D., Weight Loss, Ion Release and Initial Mechanical Properties of a Binary CalciumPhosphate Glass Fiber/PCL Composite, Acta Biomater. 2008, 4, 1307-1314 10.1016/j.actbio.2008.03.018Search in Google Scholar
[3] Ahmed I., Lewis M., Olsen I., Knowles J.C., Phosphate Glasses for Tissue Engineering: Part 1. Processing and Characterisation of a Ternary Based P2O5-CaO-Na2O Glass System, Biomaterials 2004, 25, 491-499 10.1016/S0142-9612(03)00546-5Search in Google Scholar
[4] Franks K., Abrahams I., Knowles J.C., Development of Soluble Glasses for Biomedical Use Part I: In Vitro Solubility Measurement, J. Mater. Sci-Mater. M. 2000, 11, 609-614. Search in Google Scholar
[5] Bunker B.C., Arnold G.W., Wilder J.A., Phosphate Glass Dissolution in Aques Solutions, J. Non-Cryst. Solids 1984, 64, 291-316 10.1016/0022-3093(84)90184-4Search in Google Scholar
[6] Ahmed I., Parsons A.J., Rudd C.D., Nazhat S.N., Knowles J.C., Guerry P., Smith M.E., Comparison of Phosphate-based Glasses in the Range 50P2O5-(50-x)CaO-xNa2OPrepared Using Different Precursors, Glass Technol-Part A 2008, 49, 63-72 Search in Google Scholar
[7] Abou Neel E.A., Salih V., Knowles J.C., Phosphate-based glasses. In: Ducheyne P. (Ed.), Comprehensive Biomaterials, 1st ed., Elsevier Science 2011 10.1016/B978-0-08-055294-1.00249-XSearch in Google Scholar
[8] Ahmed I., Collins C.A., Lewis M.P., Olsen I., Knowles J.C., Processing, Characterisation and Biocompatibility of Iron- Phosphate Glass Fibres for Tissue Engineering, Biomaterials 2004, 25, 3223-3232 10.1016/j.biomaterials.2003.10.013Search in Google Scholar
[9] Navarro M., Ginebra M., Planell J.A., Cellular Response to Calcium Phosphate Glasses with Controlled Solubility, J. Biomed. Mater. Res. A 2003, 67A, 1009-1015 10.1002/jbm.a.20014Search in Google Scholar
[10] Abou Neel E.A., Knowles J.C., Physical and Biocompatibility Studies of Novel Titanium Dioxide Doped Phosphate-based Glasses for Bone Tissue Engineering Applications, J.Mater. Sci- Mater. M. 2008, 19, 377-386 10.1007/s10856-007-3079-5Search in Google Scholar
[11] Ahmed I., Lewis M., Olsen I., Knowles J.C., Phosphate Glasses for Tissue Engineering: Part 2. Processing and Characterisation of a Ternary based P2O5-CaO-Na2O Glass-fibre System, Biomaterials 2004, 25,501-507 10.1016/S0142-9612(03)00547-7Search in Google Scholar
[12] Abou Neel E.A., Ahmed I., Pratten J., Nazhat S.N., Knowles J.C., Characterisation of Antibacterial Copper Releasing Degradable Phosphate Glass Fibres, Biomaterials 2005, 26,2247-2254 10.1016/j.biomaterials.2004.07.024Search in Google Scholar PubMed
[13] Kobayashi H.Y.L.S., Brauer D.S., Rüssel C., Mechanical Properties of a Degradable Phosphate Glass Fibre Reinforced Polymer Composite for Internal Fracture Fixation,Mat. Sci. Eng. C-Mater. 2010, 30,1003-1007 10.1016/j.msec.2010.04.017Search in Google Scholar
[14] Andriano K.P., Daniels A.U., Heller J., Biocompatibility and Mechanical Properties of a Totally Absorbable Composite Material for Orthopaedic Fixation Devices, J. Appl. Biomater. 1992, 3, 197-206 10.1002/jab.770030306Search in Google Scholar
[15] Felfel R.M., Ahmed I., Parsons A.J., Haque P., Walker G.S., Rudd C.D., Investigation of Crystallinity, Molecular Weight Change, and Mechanical Properties of PLA/PBG Bioresorbable Composites as Bone Fracture Fixation Plates, J. Biomater. Appl. 2012, 26,765-789 10.1177/0885328210384532Search in Google Scholar
[16] Parsons A.J., Ahmed I., Haque P., Fitzpatrick B., Niazi M.I.K., Walker G.S., Rudd C.D., Phosphate Glass Fibre Composites for Bone Repair, J. Bionic Eng. 2009, 6, 318-323 10.1016/S1672-6529(08)60132-8Search in Google Scholar
[17] Furniss D., Seddon A.B., Towards Monomode Proportioned Fibreoptic Preforms by Extrusion, J. Non- Cryst. Solids, 1999, 256& 257, 232-236. 10.1016/S0022-3093(99)00463-9Search in Google Scholar
[18] Savage S.D., Miller C.A., Furniss D., Seddon A.B., Extrusion of Chalcogenide Glass Preforms and Drawing to Multimode Optical Fibers, J. Non-Cryst. Solids 2008, 354, 3418-3427 10.1016/j.jnoncrysol.2008.01.032Search in Google Scholar
[19] Vitale-Brovarone C., Novajra G., Milanese D., Lousteau J., Knowles J.C., Novel Phosphate Glasses with Different Amounts of TiO2 for Biomedical Applications: Dissolution Tests and Proof of Concept of Fibre Drawing, Mat. Sci. Eng. C-Mater. 2011, 31, 434-442 10.1016/j.msec.2010.11.001Search in Google Scholar
[20] Abou Neel E.A., Young A.M., Nazhat S.N., Knowles J.C., A Facile Synthesis Route to Prepare Microtubes from Phosphate Glass Fibres, Adv. Mater. 2007, 19, 2856-2862 10.1002/adma.200700039Search in Google Scholar
[21] Mulligan A.M., Wilson M., Knowles J.C., The Effect of Increasing Copper Content in Phosphate-based Glasses on Biofilms of Streptococcus Sanguis, Biomaterials 2003, 24, 1797-1807 10.1016/S0142-9612(02)00577-XSearch in Google Scholar
[22] Ahmed A.A., Ali A.A., Mahmoud D.A.R., El-Fiqi A.M., Preparation and Characterization of Antibacterial P2O5-CaO-Na2OAg2O Glasses, J. Biomed. Mater. Res. A 2011, 98A, 132-142 10.1002/jbm.a.33101Search in Google Scholar PubMed
[23] Moss R.M., Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass, Adv. Funct. Mater. 2008, 18, 634- 639 10.1002/adfm.200700721Search in Google Scholar
[24] Ahmed I., Ready D.,Wilson M., Knowles J.C., Antimicrobial Effect of Silver-doped Phosphate-based Glasses, J. Biomed. Mater. Res. A 2006, 79A, 618-626 10.1002/jbm.a.30808Search in Google Scholar
[25] Ahmed I., Abou Neel E.A., Valappil S.P., Nazhat S.N., Pickup D.M., Carta D., Carroll D.L., Newport R.J., Smith M.E., Knowles J.C., The Structure and Properties of Silver-Doped Phosphatebased Glasses, J. Mater. Sci. 2007, 42, 9827-9835 10.1007/s10853-007-2008-9Search in Google Scholar
[26] Wray P., ’Cotton candy’ that heals?, Am. Ceram. Soc. Bull. 2011, 90, 25-28 Search in Google Scholar
[27] Gent A.N., Theory of the Parallel Plate Viscometer, Brit J App Phys 1960, 11, 85-87 10.1088/0508-3443/11/2/310Search in Google Scholar
[28] Burling L., Novel Phosphate Glasses for Bone Regeneration Applications, PhD thesis, University of Nottingham, Nottingham, UK, 2005 Search in Google Scholar
[29] Mairaj A.K., Feng X., Hewak D.W., Extruded ChannelWaveguides in a Neodymium-doped Lead-Silicate Glass for Integrated Optic Applications, Appl. Phys. Lett. 2003, 83, 3450-3452 10.1063/1.1622796Search in Google Scholar
[30] Lee E.T.Y., Taylor E.R.M., Two-die Assembly for the Extrusion of Glasses with Dissimilar Thermal Properties for Fibre Optic Preforms, J. Mater. Process Tech. 2007, 184, 325-329 10.1016/j.jmatprotec.2006.11.115Search in Google Scholar
[31] Paek U.C., Kurkjian C.R., Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibre, J. Am. Ceram. Soc. 1975, 58, 330-335 10.1111/j.1151-2916.1975.tb11490.xSearch in Google Scholar
[32] Jordery S., Naftaly M., Jha A., A Review of Optical and Thermal Properties of Cadmium-Mixed Halide Glass Host for the 1.3¯I 1/4m Pr3+-doped Amplifier, J. Non-Cryst. Solids 1996, 196, 199-203 10.1016/0022-3093(95)00586-2Search in Google Scholar
[33] Daly J.C., Fiber Optics, Taylor & Francis Ltd., Boca Raton, 1984 Search in Google Scholar
[34] Kurkjian C.R., Mechanical Properties of Phosphate Glasses, J. Non-Cryst. Solids. 2000, 263 & 264, 207-212 10.1016/S0022-3093(99)00637-7Search in Google Scholar
[35] Pukh V., Baikova L., Kireenko M., Tikhonova L., On the Kinetics of Crack Growth in Glass, Glass Phys. Chem 2009, 35, 560-566 10.1134/S1087659609060029Search in Google Scholar
[36] Orcel G., and Biswas D., Influence of Processing Parameters on the Strength of Fluoride Glass Fibers, J. Am. Ceram. Soc. 1991, 74, 1373-1377 10.1111/j.1151-2916.1991.tb04114.xSearch in Google Scholar
[37] Wang J., Prasad S., Kiang K., Pattnaik R.K., Toulouse J., Jain H., Source of Optical Loss in Tellurite Glass Fibers, J. Non-Cryst. Solids 2006, 352, 510-513 10.1016/j.jnoncrysol.2005.12.011Search in Google Scholar
[38] Barton G.W., Law S.H., McNamara P., Phan T.N., Measurement and Control Challenges for the Specialty Optical Fibre Industry in the 21st Century, Proceedings of the 5th Asian Control Conference, (20-23 July 2004, Melbourne, Australia), 2004, 1137-1144 Search in Google Scholar
[39] Ahmed I., Cronin P., Abou Neel E.A., Parsons A.J., Knowles J., Rudd, C.D., Retention of Mechanical Properties and Cytocompatibility of a Phosphate-based Glass Fibre/Polylactic Acid Composite, J. Biomed. Mater. Res. B 2009, 89, 18-27 10.1002/jbm.b.31182Search in Google Scholar
[40] Abou Neel E.A., Chrzanowski W., Georgiou G., Dalby M.J., Knowles J.C., In Vitro Biocompatibility and Mechanical Performance of Titanium Doped High Calcium Oxide Metaphosphate- Based Glasses, J. Tissue Eng. 2010, 10.4061/2010/390127Search in Google Scholar
[41] Hayden J.S., Marker III A.J., Suratwala T.I., Campbell J.H., Surface Tensile Layer Generation During Thermal Annealing of Phosphate Glass, J. Non-Cryst. Solids 2000, 263& 264, 228-239 10.1016/S0022-3093(99)00672-9Search in Google Scholar
[42] Cozien-Cazuc S., Characterisation of Resorbable Phosphate Glass Fibers, PhD thesis, University of Nottingham, Nottingham, UK, 2006 Search in Google Scholar
[43] Colaizzi J., Matthewson M.J., Iqbal T., Shahriari M.R., Mechanical Properties of Aluminum Fluoride Glass Fibers, Proceedings of The International Society for Optical Engineering (5-6 Sept 1991, Boston, USA), 1991, 26-33 Search in Google Scholar
[44] Karabulut M., Melnik E., Stefan R., Marasinghe G.K., Ray C.S., Kurkjian C.R., Day D.E., Mechanical and Structural Properties of Phosphate Glasses, J. Non-Cryst. Solids 2001, 288, 8-17 10.1016/S0022-3093(01)00615-9Search in Google Scholar
[45] Kordes E., Vogel W. and Feterowsk, Physikalisch-chemische Untersuchungen über die Eigenschaften und den Feinbau von Phosphatgläsern, Z. Elektrochem, Vol 57, Issue 4, (1953) pp 282. Search in Google Scholar
© 2015 I. Ahmed et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.