Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 29, 2015

Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications

  • Preethi Balasubramanian , Leonie A. Strobel , Ulrich Kneser and Aldo R. Boccaccini
From the journal Biomedical glasses


Zinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.


[1] Salgado A.J., Coutinho O.P., Reis RL., Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 2004, 4, 743–765 10.1002/mabi.200400026Search in Google Scholar

[2] Shrivats A.R., McDermott M.C., Hollinger J.O., Bone tissue engineering: state of the union, Drug Discov. Today 2014, 19, 781–786 10.1016/j.drudis.2014.04.010Search in Google Scholar

[3] Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L., Natural and genetically engineered proteins for tissue engineering, Prog. Polym. Sci. 2012, 37, 1–17 10.1016/j.progpolymsci.2011.07.003Search in Google Scholar

[4] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med. 2006, 17, 967–978 10.1007/s10856-006-0432-zSearch in Google Scholar

[5] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 1971, 5, 117–141 10.1002/jbm.820050611Search in Google Scholar

[6] Hench L.L., Polak J.M., Third-generation biomedicalmaterials. Science 2002, 295, 1014–1017 10.1126/science.1067404Search in Google Scholar

[7] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for in situ tissue regeneration, J. Biomater. Sci. Polym. Ed. 2004, 15, 543–562 10.1163/156856204323005352Search in Google Scholar

[8] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. Part B Rev. 2010, 16, 199–207 10.1089/ten.teb.2009.0416Search in Google Scholar

[9] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta. Biomater. 2013, 9, 4457–4486 10.1016/j.actbio.2012.08.023Search in Google Scholar

[10] Gomez-Vega J., Saiz E., Tomsia A., Marshall G., Marshall S., Bioactive glass coatings with hydroxyapatite and Bioglassr particles on Ti-based implants. 1. Processing, Biomaterials 2000, 21, 105–111 10.1016/S0142-9612(99)00131-3Search in Google Scholar

[11] Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz- Herrera J.A., Ochoa I., et al., The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds, Biomaterials 2011, 32, 4096–4108 10.1016/j.biomaterials.2011.02.032Search in Google Scholar

[12] Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B., Bonewald L.F., et al., Bioactive glass in tissue engineering, Acta Biomater. 2011, 7, 2355–2373 10.1016/j.actbio.2011.03.016Search in Google Scholar

[13] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 2006, 27, 3413–3431 10.1016/j.biomaterials.2006.01.039Search in Google Scholar

[14] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774 10.1016/j.biomaterials.2011.01.004Search in Google Scholar

[15] Brown K.H.,Wuehler S.E., Peerson J.M., The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency, Food Nutr. Bull. 2001, 22, 113–125 10.1177/156482650102200201Search in Google Scholar

[16] Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E., Zinc and human health: an update, Arch. Toxicol. 2012, 86, 521–534 10.1007/s00204-011-0775-1Search in Google Scholar

[17] Yamaguchi M., Role of nutritional zinc in the prevention of osteoporosis, Mol. Cell. Biochem. 2010, 338, 241–254 10.1007/s11010-009-0358-0Search in Google Scholar

[18] Aydin S.B., Hanley L., Antibacterial activity of dental composites containing zinc oxide nanoparticles, J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 22–31 Search in Google Scholar

[19] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolism in rats: Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 1986, 35, 773–777 10.1016/0006-2952(86)90245-5Search in Google Scholar

[20] Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H., Ishikawa K., et al., Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C 2002, 22, 21–25 10.1016/S0928-4931(02)00108-XSearch in Google Scholar

[21] Stefanidou M., Maravelias C., Dona A., Spiliopoulou C., Zinc: a multipurpose trace element, Arch. Toxicol. 2006, 80, 1–9 10.1007/s00204-005-0009-5Search in Google Scholar PubMed

[22] Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118 10.1152/physrev.1993.73.1.79Search in Google Scholar

[23] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S., Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen. 2007, 15, 2-16 10.1111/j.1524-475X.2006.00179.xSearch in Google Scholar

[24] Haumont S., Distribution of zinc in bone tissue, J. Histochem. Cytochem. 1961, 9, 141-145 10.1177/9.2.141Search in Google Scholar

[25] Murray E.J., Messer H.H., Turnover of bone zinc during normal and accelerated bone loss in rats, J. Nutr. 1981, 111, 1641–1647 10.1093/jn/111.9.1641Search in Google Scholar

[26] Hsieh H.S., Navia J.M., Zinc deficiency and bone formation in guinea pig alveolar implants, J. Nutr. 1980, 110, 1581–1588 10.1093/jn/110.8.1581Search in Google Scholar

[27] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 1984, 114, 1860–1863 10.1210/endo-114-5-1860Search in Google Scholar

[28] Aitken J.M., Factors affecting the distribution of zinc in the human skeleton, Calcif. Tissue Res. 1976, 20, 23–30 10.1007/BF02546394Search in Google Scholar

[29] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol. 1987, 36, 4007–4012 10.1016/0006-2952(87)90471-0Search in Google Scholar

[30] Yamaguchi M., Role of Zinc in Bone Formation and Bone Resorption, 1998, 135, 119–135 10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3Search in Google Scholar

[31] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S., O’Shea H., et al., Composition–structure–property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potential components for nerve guidance conduits, Mater. Sci. Eng. C 2011, 31, 669–676 10.1016/j.msec.2010.12.016Search in Google Scholar

[32] Sabbatini M., Boccafoschi F., Bosetti M., Cannas M., Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses, J. Biomater. Appl. 2014, 28, 708–718 10.1177/0885328212474944Search in Google Scholar PubMed

[33] Hasan M.S., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zincsilicate bioglass: “imageable beads” for transarterial embolization, J. Biomater. Appl. 2014, 29, 566–581 10.1177/0885328214537694Search in Google Scholar PubMed

[34] El-Kady A.M., Ali A.F., Fabrication and characterization of ZnO modified bioactive glass nanoparticles, Ceram. Int. 2012, 38, 1195–1204 10.1016/j.ceramint.2011.07.069Search in Google Scholar

[35] Anand V., Singh K.J., Kaur K., Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer, J. Non Cryst. Solids 2014, 406, 88–94 10.1016/j.jnoncrysol.2014.09.050Search in Google Scholar

[36] Kaur G., Pickrell G., Kimsawatde G., Homa D., Allbee H.A., Sriranganathan N., Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2- B2O3-ZnO bioactive glasses, Sci. Rep. 2014, 4, 4392 10.1038/srep04392Search in Google Scholar PubMed PubMed Central

[37] Aina V., Malavasi G., Fiorio P.A., Munaron L., Morterra C., Zinccontaining bioactive glasses: surface reactivity and behaviour towards endothelial cells, Acta Biomater. 2009, 5, 1211–1222 10.1016/j.actbio.2008.10.020Search in Google Scholar PubMed

[38] Srivastava A.K., Pyare R., Characterization of ZnO substituted 45S5 Bioactive Glasses and Glass - Ceramics, J. Mater. Sci. Res. 2012, 1, 207–220 10.5539/jmsr.v1n2p207Search in Google Scholar

[39] Haimi S., Gorianc G., Moimas L., Lindroos B., Huhtala H., Räty S., et al., Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation, Acta Biomater 2009, 5, 3122–3131 10.1016/j.actbio.2009.04.006Search in Google Scholar PubMed

[40] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., Hussain R., In vitro study of nano-sized zinc doped bioactive glass, Mater. Chem. Phys. 2013, 137, 1031–1038 10.1016/j.matchemphys.2012.11.022Search in Google Scholar

[41] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Pedone A., Segre U., et al., Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 2008, 22, 505–526 10.1177/0885328207079731Search in Google Scholar PubMed

[42] Lusvardi G., Zaffe D., Menabue L., Bertoldi C., Malavasi G., Consolo U., In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses, Acta Biomater. 2009, 5, 419–428 10.1016/j.actbio.2008.07.007Search in Google Scholar PubMed

[43] Cassingham N.J., Stennett M.C., Bingham P.A., Hyatt N.C., Aquilanti G., The Structural Role of Zn in Nuclear Waste Glasses, Int. J. Appl. Glas. Sci. 2011, 2, 343–353 10.1111/j.2041-1294.2011.00067.xSearch in Google Scholar

[44] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K., et al., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater. 2014, 10, 3264–3278 10.1016/j.actbio.2014.03.033Search in Google Scholar PubMed

[45] Kapoor S., Goel A., Correia A.F., Pascual M.J., Lee H., Kim H., Ferreira J.M.F., Influence of ZnO/MgO substitution on sintering, crystallization, and bio-activity of alkali-free glassceramics, Mater. Sci. Eng. C 2015, In Press 10.1016/j.msec.2015.04.023Search in Google Scholar PubMed

[46] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J., et al., “Smart” acid-degradable zinc-releasing silicate glasses, Mater. Lett. 2014, 126, 278–280 10.1016/j.matlet.2014.04.009Search in Google Scholar

[47] Kamitakahara M., Ohtsuki C., Inada H., Tanihara M., Miyazaki T., Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite, Acta Biomater. 2006, 2, 467–471 10.1016/j.actbio.2006.03.001Search in Google Scholar PubMed

[48] Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-Regí M., Substitutions of cerium, galliumand zinc in ordered mesoporous bioactive glasses., Acta Biomater. 2011, 7, 3452–3458 10.1016/j.actbio.2011.05.033Search in Google Scholar PubMed

[49] Balamurugan A., Balossier G., Kannan S., Michel J., Rebelo A.H.S., Ferreira J.M.F., Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass, Acta Biomater. 2007, 3, 255–262 10.1016/j.actbio.2006.09.005Search in Google Scholar PubMed

[50] Oki A., Parveen B., Hossain S., Adeniji S., Donahue H., Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials, J. Biomed. Mater. Res. A, 2004, 69, 216– 221 10.1002/jbm.a.20070Search in Google Scholar PubMed

[51] Bini M., Grandi S., Capsoni D., Mustarelli P., Saino E., Visai L., SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without ZnO: Relationships among Composition, Microstructure, and Bioactivity, J. Phys. Chem. C 2009, 113, 8821–8828 10.1021/jp810977wSearch in Google Scholar

[52] Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., Bloise N, et al., In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass, Eur. Cell. Mater. 2011, 21, 59–72 10.22203/eCM.v021a05Search in Google Scholar PubMed

[53] Singh R.K., Srinivasan A., Bioactivity of SiO2–CaO–P2O5– Na2O glasses containing zinc–iron oxide, Appl. Surf. Sci. 2010, 256, 1725–1730 10.1016/j.apsusc.2009.09.102Search in Google Scholar

[54] Erol M., Özyuguran A., Çelebican Ö., Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn- Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 2010, 33, 1066–1074 10.1002/ceat.200900495Search in Google Scholar

[55] Du R.L., Chang J., Ni S.Y., ZhaiW.Y.,Wang J.Y., Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics, J. Biomater. Appl. 2006, 20, 341–360 10.1177/0885328206054535Search in Google Scholar PubMed

[56] Du R.L., Chang J., The influence of Zn on the deposition of HA on sol-gel derived bioactive glass, Biomed. Mater. Eng. 2006, 16, 229–236 Search in Google Scholar

[57] Veres R., Vulpoi A., Magyari K., Ciuce C., Simon V., Synthesis, characterisation and in vitro testing of macroporous zinc containing scaffolds obtained by sol–gel and sacrificial template methods, J. Non Cryst. Solids, 2013, 373-374, 57–64 10.1016/j.jnoncrysol.2013.04.025Search in Google Scholar

[58] Wang X., Li X., Ito A., Sogo Y., Synthesis and characterization of hierarchicallymacroporous and mesoporous CaO-MO-SiO2- P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 2011, 7, 3638–3644 10.1016/j.actbio.2011.06.029Search in Google Scholar PubMed

[59] Looney M., O’Shea H., Boyd D., Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics, J. Biomater. Appl. 2013, 27, 511–524 10.1177/0885328211413621Search in Google Scholar PubMed

[60] Soundrapandian C.,Mahato A., Kundu B., Datta S., Sa B., Basu D., Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12 10.1016/j.jmbbm.2014.08.007Search in Google Scholar PubMed

[61] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L., Vallet-Regi M., Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses, Acta Biomater. 2013, 9, 4836–4844 10.1016/j.actbio.2012.09.024Search in Google Scholar PubMed

[62] Shruti S., Salinas A.J., In vitro antibacterial capacity and cytocompatibility, J. Mater. Chem. B 2014, 2, 4836–4847 10.1039/C4TB00403ESearch in Google Scholar PubMed

[63] Oh S.A., Kim S.H., Won J.E., Kim J.J., Shin U.S., Kim H.W., Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules, J. Tissue Eng. 2011, 2010, 475260-475270 10.4061/2010/475260Search in Google Scholar

[64] Boyd D., Carroll G., Towler M.R., Freeman C., Farthing P., Brook I.M., Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses, J. Mater. Sci. Mater. Med. 2009, 20, 413–420 10.1007/s10856-008-3569-0Search in Google Scholar

[65] Murphy S., Boyd D., Moane S., Bennett M., The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts, J. Mater. Sci. Mater. Med. 2009, 20, 2207–2214 10.1007/s10856-009-3789-ySearch in Google Scholar

[66] Xie D., Feng D., Chung I.D., Eberhardt A.W., A hybrid zinc– calcium–silicate polyalkenoate bone cement, Biomaterials 2003, 24, 2749–2757 10.1016/S0142-9612(03)00090-5Search in Google Scholar

[67] Boyd D., Clarkin O.M., Wren A.W., Towler M.R., Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties, Acta Biomater. 2008, 4, 425–431 10.1016/j.actbio.2007.07.010Search in Google Scholar PubMed

[68] Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G., The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements, J. Mater. Sci. Mater. Med. 2006, 17, 489–494 10.1007/s10856-006-8930-6Search in Google Scholar PubMed

[69] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G., Benefits and drawbacks of zinc in glass ionomer bone cements, Biomed. Mater. 2011, 6, 045007 10.1088/1748-6041/6/4/045007Search in Google Scholar PubMed

[70] Zhang J., Park Y.D., Bae W.J., El-Fiqi A., Shin S.H., Lee E.J., et al., Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells, J. Biomater. Appl. 2015, 29, 954–64 10.1177/0885328214550896Search in Google Scholar PubMed

[71] Boyd D., Towler M.R., Law R.V., Hill R.G., An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy, J. Mater. Sci. Mater. Med. 2006, 17, 397-402 10.1007/s10856-006-8465-xSearch in Google Scholar PubMed

[72] Zhang X., Werner-Zwanziger U., Boyd D., Compositionstructure- property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses, J. Biomater. Appl. 2015, 29, 1203-17 10.1177/0885328214557906Search in Google Scholar PubMed

[73] Lynch E., Brauer D.S., Karpukhina N., Gillam D.G., Hill R.G., Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity, Dent.Mater. 2012, 28, 168-178 10.1016/ in Google Scholar PubMed

[74] Esteban-Tejeda L., Díaz L.A., Prado C., Cabal B., Torrecillas R., Moya J.S., Calciumand zinc containing bactericidal glass coatings for biomedical metallic substrates, Int. J. Mol. Sci. 2014, 15, 13030–13044 10.3390/ijms150713030Search in Google Scholar PubMed PubMed Central

[75] Lotfibhakshaiesh N., Brauer D.S., Hill R.G., Bioactive glass engineered coatings for Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour, J. Non-Cryst. Solids 2010, 356, 2583-90 10.1016/j.jnoncrysol.2010.05.017Search in Google Scholar

[76] Dietzel A., Die Kationenfeldskärten und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu denSchmelzpunkten von Silicaten, Z. Electrochem. Angew. P. 1942, 48, 9-23. Search in Google Scholar

[77] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Synthesis, characteriaztation and molecular dynamics simulation of Na2O-CaO-SiO2-ZnO glasses, J. Phys. Chem. B 2002, 106, 9753-60. 10.1021/jp020321sSearch in Google Scholar

[78] Wallace K., Design of novel bioactive glass compositions, PhD thesis, University of Limerick, Limerick, Ireland, 2000 Search in Google Scholar

[79] McMillan P., Glass-Ceramics., London, Academic Press, 1964 Search in Google Scholar

[80] Grand M. Le., Ramos A.Y., Calas G., Galoisy L., Ghaleb D., Pacaud F., Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy, J. Mater. Res. 2011, 15, 2015–2019 10.1557/JMR.2000.0289Search in Google Scholar

[81] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M., Gatti S., et al., Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics, J. Mater. Sci. Mater. Med. 2009, 20, 75–87 10.1007/s10856-008-3537-8Search in Google Scholar PubMed

[82] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L., Morterra C., et al., Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts, Chem. Biol. Interact. 2007, 167, 207–218 10.1016/j.cbi.2007.03.002Search in Google Scholar PubMed

[83] Lao J., Nedelec J., Jallot E., Controlled Bioactivity in Zinc-Doped Sol - Gel-Derived Binary Bioactive Glasses, J. Phys. Chem. 2008, 112, 13663–13667 10.1021/jp8044498Search in Google Scholar

[84] Kokubo T., Takadama H., Howuseful is SBF in predicting in vivo bone bioactivity?, Biomaterials 2006, 27, 2907–2915 10.1016/j.biomaterials.2006.01.017Search in Google Scholar PubMed

[85] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory Effect ofMagnesiumand Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face, J. Phys. Chem. B 2000, 104, 4189–4194 Search in Google Scholar

[86] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non Cryst. Solids 2011, 357, 3884–3887 10.1016/j.jnoncrysol.2011.07.025Search in Google Scholar

[87] Leek J.C., Keen C.L., Vogler J.B., Golub M.S., Hurley L.S., Hendrickx A.G., et al., Long-term marginal zinc deprivation in rhesus monkeys. IV. Effects on skeletal growth and mineralizatio, Am. J. Clin. Nutr. 1988, 47, 889–895 10.1093/ajcn/47.5.889Search in Google Scholar PubMed

[88] Nagata M., Kayanoma M., Takahashi T., Kaneko T., Hara H., Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates, Biol. Trace. Elem. Res. 2011, 142, 190–199 10.1007/s12011-010-8760-8Search in Google Scholar PubMed

[89] Hadley K.B., Newman S.M., Hunt J.R., Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation,matrixmaturation, and mineralization in the long bones of growing rats, J. Nutr. Biochem. 2010, 21, 297–303 10.1016/j.jnutbio.2009.01.002Search in Google Scholar PubMed

[90] Dimai H.P., Hall S.L., Stilt-Coflng B., Farley J.R., Skeletal response to dietary zinc in adult female mice, Calcif. Tissue Int. 1998, 62, 309–315 10.1007/s002239900437Search in Google Scholar PubMed

[91] Jones L., Thomsen J.S., Barlach J., Mosekilde L., Melsen B., No influence of alimentary zinc on the healing of calvarial defects filled with osteopromotive substances in rats, Eur. J. Orthod. 2010, 32, 124–130 10.1093/ejo/cjp076Search in Google Scholar PubMed

[92] Hyun T.H., Barrett-Connor E., Milne D.B., Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study, Am. J. Clin. Nutr. 2004, 80, 715–721 10.1093/ajcn/80.3.715Search in Google Scholar PubMed

[93] Bouglé D.L., Sabatier J.P., Guaydier-Souquières G., Guillon- Metz F., Laroche D., Jauzac P., et al., Zinc status and bone mineralisation in adolescent girls, J. Trace Elem. Med. Biol. 2004, 18, 17–21 10.1016/j.jtemb.2004.03.001Search in Google Scholar PubMed

[94] Nagata M., Lönnerdal B., Role of zinc in cellular zinc traflcking and mineralization in a murine osteoblast-like cell line, J. Nutr. Biochem. 2011, 22, 172–178 10.1016/j.jnutbio.2010.01.003Search in Google Scholar PubMed

[95] Liang D., Yang M., Guo B., Cao J., Yang L., Guo X., Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways, Biol. Trace Elem. Res. 2012, 146, 340–348 10.1007/s12011-011-9254-zSearch in Google Scholar PubMed

[96] Yamaguchi M., Weitzmann M.N., Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kB activation, Mol. Cell. Biochem. 2011, 355, 179–186 10.1007/s11010-011-0852-zSearch in Google Scholar PubMed

[97] Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., Teitelbaum S.L., TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Invest. 2000, 106, 1481–1488 10.1172/JCI11176Search in Google Scholar

[98] Kwun I.S., Cho Y.E., Lomeda R.A.R., Shin H.I., Choi J.Y., Kang Y.H., et al., Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation, Bone, 2010, 46, 732–741 10.1016/j.bone.2009.11.003Search in Google Scholar

[99] Nikolic-Hughes I., O’Brien P.J., Herschlag D., Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions, J. Am. Chem. Soc. 2005, 127, 9314–9315 10.1021/ja051603jSearch in Google Scholar

[100] Gerhardt L.C., Boccaccini A.R., Bioactive Glass and Glass- Ceramic Scaffolds for Bone Tissue Engineering, Materials 2010, 3, 3867–3910 10.3390/ma3073867Search in Google Scholar

[101] Ritger P.L., Peppas N.A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 1987, 5, 37–42 10.1016/0168-3659(87)90035-6Search in Google Scholar

[102] Vallet-Regí M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. Engl. 2007, 46, 7548– 7558 10.1002/anie.200604488Search in Google Scholar

[103] Smith D.C., A new dental cement, Br. Dent. J. 1968, 125, 381- 384 Search in Google Scholar

[104] Wilson A.D., Kent B.E., The glass-ionomer cement: a new translucent cement for dentistry, J. Appl. Chem. Biotech. 1971, 21, 313 10.1002/jctb.5020211101Search in Google Scholar

[105] Peters W.J., Jackson R.W., Smith D.C., Studies of the Stability and Toxicity of Zinc Polyacrylate (polycarboxylate) Cements (PAZ)*, J. Biomed. Mater. Res. 1974, 8, 53–60 10.1002/jbm.820080107Search in Google Scholar

[106] Darling M., Hill R., Novel polyalkenoate (glass-ionomer) dental cements based on zinc silicate glasses, Biomaterials 1994, 15, 299–306 10.1016/0142-9612(94)90055-8Search in Google Scholar

[107] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W., Clarkin O.M., et al., Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty, J. Mater. Sci. Mater. Med. 2010, 21, 59–66 10.1007/s10856-009-3845-7Search in Google Scholar PubMed

[108] Qiao Y., ZhangW., Tian P., Meng F., Zhu H., Jiang X., et al., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials 2014, 35, 6882–6897 10.1016/j.biomaterials.2014.04.101Search in Google Scholar PubMed

Received: 2015-3-1
Accepted: 2015-5-25
Published Online: 2015-7-29

© 2015 P. Balasubramanian et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.4.2023 from
Scroll to top button