Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 14, 2016

Sodium-free mixed alkali bioactive glasses

  • Delia S. Brauer , Raika Brückner , Maxi Tylkowski and Leena Hupa
From the journal Biomedical glasses

Abstract

Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.

References

[1] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater, 2013, 9, 4457-4486. 10.1016/j.actbio.2012.08.023Search in Google Scholar

[2] Wallace K.E., Hill R.G., Pembroke J.T., Brown C.J., Hatton P.V., Influence of sodium oxide content on bioactive glass properties, J Mater Sci-Mater M, 1999, 10, 697-701. 10.1023/A:1008910718446Search in Google Scholar

[3] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 2011, 32, 2757-2774. 10.1016/j.biomaterials.2011.01.004Search in Google Scholar

[4] Ducheyne P., Effect of bioactive glass particle size on osseous regeneration, J Biomed Mater Res, 1999, 46, 301-303. 10.1002/(SICI)1097-4636(199908)46:2<301::AID-JBM20>3.0.CO;2-#Search in Google Scholar

[5] Lindfors N.C., Koski I., Heikkila J.T., Mattila K., Aho A.J., A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors, J Biomed Mater Res B, 2010, 94B, 157-164. 10.1002/jbm.b.31636Search in Google Scholar

[6] Groh D., Döhler F., Brauer D.S., Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation, Acta Biomater, 2014, 10, 4465–4473. 10.1016/j.actbio.2014.05.019Search in Google Scholar

[7] Döhler F., Groh D., Chiba S., Bierlich J., Kobelke J., Brauer D.S., Bioactive glasses with improved processing. Part 2. Viscosity and fibre drawing, J Non-Cryst Solids, 2016, 432, 130-136. 10.1016/j.jnoncrysol.2015.03.009Search in Google Scholar

[8] Brink M., The influence of alkali and alkaline earths on the working range for bioactive glasses, J Biomed Mater Res, 1997, 36, 109-117. 10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-DSearch in Google Scholar

[9] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Bioactivity of sodium free fluoride containing glasses and glass-ceramics, Materials, 2014, 7, 5470-5487. 10.3390/ma7085470Search in Google Scholar

[10] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Novel alkali free bioactive fluorapatite glass ceramics, J Non- Cryst Solids, 2014, 402, 172-177. 10.1016/j.jnoncrysol.2014.05.025Search in Google Scholar

[11] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K. et al., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater, 2014, 10, 3264-3278. 10.1016/j.actbio.2014.03.033Search in Google Scholar

[12] Tylkowski M., Brauer D.S., Mixed alkali effects in Bioglassr 45S5, J Non-Cryst Solids, 2013, 376, 175-181. 10.1016/j.jnoncrysol.2013.05.039Search in Google Scholar

[13] Ray N.H., Composition-property relationships in inorganic oxide glasses, J Non-Cryst Solids, 1974, 15, 423-434. 10.1016/0022-3093(74)90148-3Search in Google Scholar

[14] Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst, 1976, A32, 751-767. 10.1107/S0567739476001551Search in Google Scholar

[15] Brückner R., Tylkowski M., Hupa L., Brauer D.S., Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume, Journal ofMaterials Chemistry B, 2016, 4, 3121-3134. 10.1039/C5TB02426ASearch in Google Scholar PubMed

[16] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R.G., Structural analysis of bioactive glasses, J Non-Cryst Solids, 2005, 351, 173-183. 10.1016/j.jnoncrysol.2004.07.067Search in Google Scholar

[17] Fredholm Y.C., Karpukhina N., Law R.V., Hill R.G., Strontiumcontaining bioactive glasses: Glass structure and physical properties, J Non-Cryst Solids, 2010, 356, 2546-2551. 10.1016/j.jnoncrysol.2010.06.078Search in Google Scholar

[18] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolution medium pH on ion release and apatite formation of Bioglassr 45S5, Mater Lett, 2015, 143, 279-282. 10.1016/j.matlet.2014.12.124Search in Google Scholar

[19] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3- diol (Tris) buffer, Acta Biomater, 2013, 9, 5400-5410. 10.1016/j.actbio.2012.08.051Search in Google Scholar PubMed

[20] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of a bioactive glass by continuous measurement, J Am Ceram Soc, 2012, 95, 3130-3137. 10.1111/j.1551-2916.2012.05374.xSearch in Google Scholar

[21] Serra J., González P., Liste S., Chiussi S., León B., Pérez-Amor M. et al., Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses, J Mater Sci-Mater M, 2002, 13, 1221-1225. 10.1023/A:1021174912802Search in Google Scholar

[22] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J Biomed Mater Res, 2001, 58, 720-726. 10.1002/jbm.10053Search in Google Scholar

[23] LeGeros R.Z., Trautz O.R., Klein E., LeGeros J.P., Two types of carbonate substitution in the apatite structure, Experientia, 1969, 25, 5-7. 10.1007/BF01903856Search in Google Scholar

[24] O’Donnell M.D.,Watts S.J., Hill R.G., LawR.V., The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses, J Mater Sci-Mater M, 2009, 20, 1611-1618. 10.1007/s10856-009-3732-2Search in Google Scholar

[25] Brauer D.S., Bioactive glasses—structure and properties, Angew Chem Int Edit, 2015, 54, 4160-4181. 10.1002/anie.201405310Search in Google Scholar

[26] VogelW., Glass chemistry, 2nd ed. Springer, Berlin, Heidelberg, New York, London, 1994 1994. Search in Google Scholar

[27] Day D.E., Mixed alkali glasses - their properties and uses, J Non- Cryst Solids, 1976, 21, 343-372. 10.1016/0022-3093(76)90026-0Search in Google Scholar

[28] Kamitsos E.I., Varsamis C.P.E., Vegiri A. Spectroscopic studies of mobile cations in glass. International Congress of Glass; Edinburgh, Scotland. Shefleld, UK: Society of Glass Technology; 2001. p. 234-246. Search in Google Scholar

[29] Brow R.K., Review: the structure of simple phosphate glasses, J Non-Cryst Solids, 2000, 263, 1-28. 10.1016/S0022-3093(99)00620-1Search in Google Scholar

[30] Ahmed I., Collins C.A., Lewis M.P., Olsen I., Knowles J.C., Processing, characterisation and biocompatibility of ironphosphate glass fibres for tissue engineering, Biomaterials, 2004, 25, 3223-3232. 10.1016/j.biomaterials.2003.10.013Search in Google Scholar PubMed

[31] Natrup F.V., Bracht H., Correlation between the cation radii and the glass transition in mixed cation silicate glasses, Phys Chem Glasses, 2005, 46, 95-98. Search in Google Scholar

[32] Dilmore M.F., Clark D.E., Hench L.L., Chemical durability of Na2O-K2O-CaO-SiO2 glasses, J Am Ceram Soc, 1978, 61, 439- 443. 10.1111/j.1151-2916.1978.tb09355.xSearch in Google Scholar

[33] Scholze H., Glass: Nature, structure, and properties. Springer, New York, 1991. 10.1007/978-1-4613-9069-5Search in Google Scholar

[34] Maçon A.L.B., Kim T.B., Valliant E.M., Goetschius K., Brow R.K., Day D.E. et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, Journal ofMaterials Science-Materials in Medicine, 2015, 26. 10.1007/s10856-015-5403-9Search in Google Scholar PubMed

[35] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass, J Biomed Mater Res A, 2014, 102, 647-654. 10.1002/jbm.a.34724Search in Google Scholar PubMed

Received: 2016-8-31
Accepted: 2016-11-21
Published Online: 2016-12-14

© 2016 D. S. Brauer et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.3.2023 from https://www.degruyter.com/document/doi/10.1515/bglass-2016-0012/html
Scroll Up Arrow