Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access April 13, 2020

Novel borosilicate bioactive scaffolds with persistent luminescence

Paloma Roldán Del Cerro , Henriikka Teittinen , Isabella Norrbo , Mika Lastusaari , Jonathan Massera EMAIL logo and Laeticia Petit
From the journal Biomedical Glasses

Abstract

Persistent luminescent amorphous borosilicate scaffolds were successfully prepared, for the first time, with a porosity of >70% using the burn-off technique. The persistent luminescence was obtained by adding the SrAl2O4:Eu2+,Dy3+ microparticles: i) in the glass melt or ii) in the glass crushed into powder prior to the sintering. The scaffolds prepared by adding the microparticles in the glass melt exhibits lower persistent luminescence and a slower reaction rate in simulated body fluid than the scaffolds prepared by adding the microparticles in the glass powder due to the release of strontium from the microparticles into the glass during the glass melting.

References

[1] Lindfors N.C., Koski I., Heikkilä J. T., Mattila K., Aho A. J., A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors, J Biomed Mater Res B, 2010, 94B, 157-164.10.1002/jbm.b.31636Search in Google Scholar

[2] Brito H. F., Hölsä J., Laamanen T., Lastusaari M., Malkamäki M., Rodrigues L. C. V., Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study, Opt. Mater. Express, 2012, 2, 287-293.10.1364/OME.2.000287Search in Google Scholar

[3] Aitasalo T., Hölsä J., Jungner H., Lastusaari M., Niittykoski J., Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+, J Phys Chem B, 2006, 110 (10), 4589-4598.10.1021/jp057185mSearch in Google Scholar

[4] Nakanishi T., Katayama Y, Ueda J, Honma T, Tanabe S., Komatsu T., Fabrication of Eu:SrAl2O4-based glass ceramics using frozen sorbet method, J Ceram Soc JPN, 2011, 119, 609-615.10.2109/jcersj2.119.609Search in Google Scholar

[5] Massera J., Głuchowski P., Lastusaari M., Rodrigues L.C.V., Petit L., Hölsä J., Hupa L., Hupa M., New alternative route for the preparation of phosphate glasses with persistent luminescence, J. Eur. Ceram., 2015, 35, 1255.Search in Google Scholar

[6] Massera J., Gaussiran M., Głuchowski P., Lastusaari M., Hupa L., Petit L., Processing and characterization of new phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticles, J. Eur. Ceram., 2015, 35, 3863-3871.10.1016/j.jeurceramsoc.2015.06.031Search in Google Scholar

[7] Massera J., Gaussiran M., Gluchowski P., Lastusaari M., Petit L., Hölsä J., Hupa L., Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence properties, Opt. Mater, 2016, 52, 56-61.10.1016/j.optmat.2015.12.006Search in Google Scholar

[8] Roldán Del Cerro P., Salminen T., Lastusaari M., Petit L., Persistent luminescent borosilicate glasses using direct particles doping method, Scr. Mater., 2018, 151, 38-41.10.1016/j.scriptamat.2018.03.034Search in Google Scholar

[9] Jones J., Hench L.L., Regeneration of trabecular bone using porous ceramics, Curr. Opin. Solid State Mater. Sci., 2003, 7 (4), 301-307.10.1016/j.cossms.2003.09.012Search in Google Scholar

[10] Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, 2000, 21(24), 2529-2543.10.1016/S0142-9612(00)00121-6Search in Google Scholar

[11] Erasmus E.P., Johnson O. T., Sigalas I., Massera J., Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration Sci. Rep., 2017, 7, 6046.Search in Google Scholar

[12] Erasmus E.P., Johnson O. T., Massera J., Sigalas I., In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regeneration, Sci. Rep., 2018, 8, 3699.Search in Google Scholar

[13] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res., 1990, 24, 721-734.10.1002/jbm.820240607Search in Google Scholar PubMed

[14] Aitasalo T., Hölsä J., Jungner H., Krupa J-C., Lastusaari M., Legendziewicz J., Niittykoski J., Annihilation of the persistent luminescence of MAl2O4:Eu2+ by Sm3+ co-doping, Radiat. Meas., 2004, 38, 727-730.10.1016/j.radmeas.2004.01.031Search in Google Scholar

[15] Saarinen M., Nommeots-Nomm A., Hokka M., Laurila J., Norrbo I., Lastusaari M., Massera J., Petit L.,. Persistent Luminescent Particles Containing Bioactive Glasses: Prospect Toward Tracking in-vivo Implant Mineralization using Biophotonic ceramics, J. Eur. Ceram., 2018, 38, 287-295.10.1016/j.jeurceramsoc.2017.08.024Search in Google Scholar

[16] Huang W., Rahaman M. N., Day D.E., Li Y., Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution, Phys & Chemistry of Glasses: Eur. J. Sci. Technol. B. 2006, 47, 1-12.Search in Google Scholar

[17] Massera J., Hupa L., Influence of SrO substitution for CaO on the properties of bioactive glass S53P4, J Mater Sci Mater Med, 2014, 25 (3), 657-668.10.1007/s10856-013-5120-1Search in Google Scholar PubMed

[18] Fabert M., Ojha N., Erasmus E., Hannula M., Hokka M., Hyttinen J., Rocherullé J., Sigalas I., Massera J., Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering, J. Mater. Chem. B, 2017, 5 (23), 4514-4525.10.1039/C7TB00106ASearch in Google Scholar

[19] Wilder J.A., Shelby J.E., Property Variation in Alkali Alkaline-Earth Metaphosphate Glasses, J. Am. Ceram. Soc., 1984, 67(6), 438-444.10.1111/j.1151-2916.1984.tb19732.xSearch in Google Scholar

[20] Konidakis I., Varsamis C.-P.E., Kamitsos E.I., Möncke D., Ehrt D., Structure and Properties of Mixed Strontium-Manganese Metaphosphate Glasses, J. Phys. Chem., 2010, 114, 9125-9138.10.1021/jp101750tSearch in Google Scholar

[21] McMillan P.F., Remmele R.L., Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra, Am. Mineral, 1986, 71, 772-778.Search in Google Scholar

[22] Ojansivu M., Mishra A., Vanhatupa S., Juntunen M., Larionova A., Massera J., Miettinen S., The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells, PlosOne, 2018, 13, e0202740.10.1371/journal.pone.0202740Search in Google Scholar PubMed PubMed Central

Received: 2020-02-18
Revised: 2020-03-09
Accepted: 2020-03-21
Published Online: 2020-04-13

© 2020 Paloma Roldán Del Cerro et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 27.1.2023 from https://www.degruyter.com/document/doi/10.1515/bglass-2020-0001/html
Scroll Up Arrow