Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 2, 2020

Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities

  • Zakaria Tabia , Sihame Akhtach , Khalil El Mabrouk EMAIL logo , Meriame Bricha , Khalid Nouneh and Anbalagan Ballamurugan
From the journal Biomedical Glasses


Multifunctionality can be achieved for bioactive glasses by endowing them with multiple other properties along with bioactivity. One way to address this topic is by doping these glasses with therapeutic metallic ions. In this work, we put under investigation a series of bioactive glasses doped with tantalum. We aim to study the effect of tantalum, on the structure, bioactivity and antibacterial property of a ternary bioactive glass composition based on SiO2-CaO-P2O5. Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Electron Scanning Microscopy (SEM) were used to assess the structural and morphological properties of these glasses and monitor their changes after in vitro acellular bioactivity test. Antibacterial activity was tested against gram positive and negative bacteria. Characterization results confirmed the presence of calcium carbonate crystallites along with the amorphous silica matrix. The assessment of bioactivity in SBF indicated that all compositions showed a fast bioactive response after only six hours of immersion period. However, analytical characterization revealed that tantalum introduced a slight latency in hydroxyapatite deposition at higher concentrations (0.8-1 %mol). Antibacterial test showed that tantalum ions had an inhibition effect on the growth of E. coli and S. aureus. This effect was more pronounced in compositions where mol% of tantalum is superior to 0.4%. These results proved that tantalum could be used, in intermediate proportions, as a promising multifunctional dopant element in bioactive glasses for bone regeneration applications.


[1] Li J.J., Kaplan D.L., Zreiqat H., Scaffold-based regeneration of skeletal tissues to meet clinical challenges, J. Mater. Chem. B, 2014, 2, 7272-7306.10.1039/C4TB01073FSearch in Google Scholar

[2] Hench L.L., Chronology of Bioactive Glass Development and Clinical Applications, New J. Glas. Ceram., 2013, 03, 67-73.10.4236/njgc.2013.32011Search in Google Scholar

[3] Hench L.L., The story of Bioglass®, J. Mater. Sci. Mater. Med., 2006, 17, 967-978.10.1007/s10856-006-0432-zSearch in Google Scholar PubMed

[4] Li R., Clark A.E., Hench L.L., An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater., 1991, 2, 231-239.10.1002/jab.770020403Search in Google Scholar PubMed

[5] Yan X., Yu C., Zhou X., Tang J., Zhao D., Highly ordered meso-porous bioactive glasses with superior in vitro bone-forming bioactivities, Angew. Chemie - Int. Ed., 2004, 43, 5980-5984.10.1002/anie.200460598Search in Google Scholar PubMed

[6] Lo’pez-Noriega A., Arcos D., Izquierdo-Barba I., Sakamoto Y., Terasaki O., Vallet-Regı M., Ordered mesoporous bioactive glasses for bone tissue regeneration, Chem. Mater., 2006, 18, 3137-3144.10.1021/cm060488oSearch in Google Scholar

[7] Knabe C., Adel-Khattab D., Ducheyne P., 1.12 Bioactivity: Mechanisms, Compr. Biomater. II, 2017, 1, 291-310.10.1016/B978-0-12-803581-8.09400-5Search in Google Scholar

[8] Singh A., Dubey A.K., Various Biomaterials and Techniques for Improving Antibacterial Response, ACS Appl. Bio Mater., 2018, 1, 3-20.10.1021/acsabm.8b00033Search in Google Scholar

[9] Fernandes J.S., Gentile P., Pires R.A., Reis R.L., Hatton P. V., Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue, Acta Biomater., 2017, 59, 2-11.10.1016/j.actbio.2017.06.046Search in Google Scholar PubMed

[10] Arciola C.R., Campoccia D., Montanaro L., Implant infections: Adhesion, biofilm formation and immune evasion, Nat. Rev. Microbiol., 2018, 16, 397-409.10.1038/s41579-018-0019-ySearch in Google Scholar PubMed

[11] Eng A.S., Eng E.T., Eng F.P., Prof A.R.B., Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications, Nanomedicine Nanotechnology, Biol. Med., 2011, 7, 22-39.10.1016/j.nano.2010.10.005Search in Google Scholar PubMed

[12] Johnson C.T., García A.J., Scaffold-based Anti-infection Strategies in Bone Repair, Ann. Biomed. Eng., 2015, 43, 515-528.10.1007/s10439-014-1205-3Search in Google Scholar PubMed PubMed Central

[13] Bordi C., de Bentzmann S., Hacking into bacterial biofilms: a new therapeutic challenge, Ann. Intensive Care, 2011, 1, 1-8.10.1186/2110-5820-1-19Search in Google Scholar PubMed PubMed Central

[14] Nathan C., Cars O., Antibiotic Resistance — Problems, Progress, and Prospects, N. Engl., 2014, 689-691.Search in Google Scholar

[15] Cacciotti I., Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 2017, 52, 8812-8831.10.1007/s10853-017-1010-0Search in Google Scholar

[16] Tabia Z., El Mabrouk K., Bricha M., Nouneh K., Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity, RSC Adv., 2019, 9, 12232-12246.10.1039/C9RA01133ASearch in Google Scholar

[17] Daguano J.K.M.F., Rogero S.O., Crovace M.C., Peitl O., Strecker K., Dos Santos C., Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P2O5-SiO2-MgO system, J. Mater. Sci. Mater. Med., 2013, 24, 2171-2180.10.1007/s10856-013-4972-8Search in Google Scholar PubMed

[18] Romero-Gavilán F., Araújo-Gomes N., García-Arnáez I., Martínez-Ramos C., Elortza F., Azkargorta M., Iloro I., Gurruchaga M., Suay J., Goñi I., The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions, Colloids Surfaces B Biointerfaces, 2019, 174, 9-16.10.1016/j.colsurfb.2018.10.075Search in Google Scholar PubMed

[19] Rau J. V., Curcio M., Raucci M.G., Barbaro K., Fasolino I., Teghil R., Ambrosio L., De Bonis A., Boccaccini A.R., Cu-Releasing Bioactive Glass Coatings and Their in Vitro Properties, ACS Appl. Mater. Interfaces, 2019, 11, 5812-5820.10.1021/acsami.8b19082Search in Google Scholar PubMed

[20] Sharifianjazi F., Parvin N., Tahriri M., Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, J. Non. Cryst. Solids, 2017, 476, 108-113.10.1016/j.jnoncrysol.2017.09.035Search in Google Scholar

[21] Brückner R., Tylkowski M., Hupa L., Brauer D.S., Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume, J. Mater. Chem. B, 2016, 4, 3121-3134.10.1039/C5TB02426ASearch in Google Scholar PubMed

[22] Lao J., Jallot E., Nedelec J.M., Strontium-delivering glasses with enhanced bioactivity: A new biomaterial for antiosteoporotic applications?, Chem. Mater., 2008, 20, 4969-4973.10.1021/cm800993sSearch in Google Scholar

[23] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N., O’Donnell M.D., Hill R.G., Stevens M.M., The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, 2010, 31, 3949-3956.10.1016/j.biomaterials.2010.01.121Search in Google Scholar PubMed

[24] Isaac J., Nohra J., Lao J., Jallot E., Nedelec J.M., Berdal A., Sautier J.M., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells, Eur. Cells Mater., 2011, 21, 130-143.10.22203/eCM.v021a11Search in Google Scholar PubMed

[25] Romero-Sánchez L.B., Marí-Beffa M., Carrillo P., Medina M.Á., Díaz-Cuenca A., Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model, Acta Bio-mater., 2018, 68, 272-285.10.1016/j.actbio.2017.12.032Search in Google Scholar PubMed

[26] Zhu H., Hu C., Zhang F., Feng X., Li J., Liu T., Chen J., Zhang J., Preparation and antibacterial property of silver-containing meso-porous 58S bioactive glass, Mater. Sci. Eng. C, 2014, 42, 22-30.10.1016/j.msec.2014.05.004Search in Google Scholar PubMed

[27] Zheng K., Balasubramanian P., Paterson T., Stein R., MacNeil S., Fiorilli S., Vitale-Brovarone C., Shepherd J., Boccaccini A.R., Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model, Mater. Sci. Eng. C, 2019, 103, 109764.10.1016/j.msec.2019.109764Search in Google Scholar PubMed

[28] Pourshahrestani S., Zeimaran E., Kadri N.A., Gargiulo N., Jindal H.M., Naveen S.V., Sekaran S.D., Kamarul T., Towler M.R., Potency and Cytotoxicity of a Novel Gallium-Containing Meso-porous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents, ACS Appl. Mater. Interfaces, 2017, 9, 31381-31392.10.1021/acsami.7b07769Search in Google Scholar PubMed

[29] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., Hussain R., In-vitro characterization of antibacterial bioactive glass containing ceria, Ceram. Int., 2014, 40, 729-737.10.1016/j.ceramint.2013.06.062Search in Google Scholar

[30] Alhalawani A.M.F., Towler M.R., The effect of ZnO-Ta2O5 substitution on the structural and thermal properties of SiO2-ZnO-SrO-CaO-P2O5 glasses, Mater. Charact., 2016, 114, 218-224.10.1016/j.matchar.2016.03.004Search in Google Scholar

[31] George N., Nair A.B., Porous tantalum, Elsevier Ltd, 2018,.10.1016/B978-0-08-102205-4.00011-8Search in Google Scholar

[32] Shi L.Y., Wang A., Zang F.Z., Wang J.X., Pan X.W., Chen H.J., Tantalum-coated pedicle screws enhance implant integration, Colloids Surf. B Biointerf, 2017, 160, 22-32.10.1016/j.colsurfb.2017.08.059Search in Google Scholar

[33] Ma Z., Xie H., Wang B., Wei X., Zhao D., A novel Tantalum coating on porous SiC used for bone filling material, Mater. Lett., 2016, 179, 166-169.10.1016/j.matlet.2016.05.065Search in Google Scholar

[34] Levine B.R., Sporer S., Poggie R.A., Della Valle C.J., Jacobs J.J., Experimental and clinical performance of porous tantalum in orthopedic surgery, Biomaterials, 2006, 27, 4671-4681.10.1016/j.biomaterials.2006.04.041Search in Google Scholar

[35] Stanic V., Nicoli Aldini N., Fini M., Giavaresi G., Giardino R., Krajewski A., Ravaglioli A., Mazzocchi M., Dubini B., Ponzi Bossi M.G., Rustichelli F., Osteointegration of bioactive glass-coated zirconia in healthy bone: An in vivo evaluation, Biomaterials, 2002, 23, 3833-3841.10.1016/S0142-9612(02)00119-9Search in Google Scholar

[36] Rosengren Å., Oscarsson S., Mazzocchi M., Krajewski A., Ravaglioli A., Protein adsorption onto two bioactive glass-ceramics, Bio-materials, 2003, 24, 147-155.10.1016/S0142-9612(02)00272-7Search in Google Scholar

[37] Alhalawani A.M., Towler M.R., A novel tantalum-containing bio-glass. Part I. Structure and solubility, Mater. Sci. Eng. C, 2017, 72, 202-211.10.1016/j.msec.2016.11.066Search in Google Scholar PubMed

[38] Cordeiro L., Silva R.M., De Pietro G.M., Pereira C., Ferreira E.A., Ribeiro S.J.L., Messaddeq Y., Cassanjes F.C., Poirier G., Thermal and structural properties of tantalum alkali-phosphate glasses, J. Non. Cryst. Solids, 2014, 402, 44-48.10.1016/j.jnoncrysol.2014.05.015Search in Google Scholar

[39] Lombardi M., Cacciotti I., Bianco A., Montanaro L., RKKP bioactive glass-ceramic material through an aqueous sol-gel process, Ceram. Int., 2015, 41, 3371-3380.10.1016/j.ceramint.2014.10.064Search in Google Scholar

[40] Russo T., de Santis R., Gloria A., Barbaro K., Altigeri A., Fadeeva I. V, Rau J. V, Modification of PMMA cements for cranioplasty with bioactive glass and copper doped tricalcium phosphate particles, Polymers (Basel)., 2020, 12, 4-6.10.3390/polym12010037Search in Google Scholar PubMed PubMed Central

[41] Rau J. V., Teghil R., Fosca M., De Bonis A., Cacciotti I., Bianco A., Albertini V.R., Caminiti R., Ravaglioli A., Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route), Mater. Res. Bull., 2012, 47, 1130-1137.10.1016/j.materresbull.2012.02.011Search in Google Scholar

[42] Mendonca A., Rahman S., Alhalawani A., Rodriguez O., Gallant R.C., Ni H., Clarkin O.M., Towler M.R., The effect of tantalum incorporation on the physical and chemical properties of ternary silicon - calcium - phosphorous mesoporous bioactive glasses, J. Biomed. Mater. Res. Part B Appl. Biomater., 2019, 000B, 1-9.Search in Google Scholar

[43] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 2907-2915.10.1016/j.biomaterials.2006.01.017Search in Google Scholar

[44] Hu S., Chang J., Liu M., Ning C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med., 2009, 20, 281-286.10.1007/s10856-008-3564-5Search in Google Scholar

[45] Bérubé F., Kaliaguine S., Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials, Microporous Mesoporous Mater., 2008, 115, 469-479.10.1016/j.micromeso.2008.02.028Search in Google Scholar

[46] Filgueiras M.R.T., La Torre G., Hench L.L., Solution effects on the surface reactions of three bioactive glass compositions, J. Biomed. Mater. Res., 1993, 27, 1485-1493.10.1002/jbm.820271204Search in Google Scholar

[47] Mozafari M., Moztarzadeh F., Tahriri M., Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaOP2O5 glass in simulated body fluid, J. Non. Cryst. Solids, 2010, 356, 1470-1478.10.1016/j.jnoncrysol.2010.04.040Search in Google Scholar

[48] Kontoyannis C.G., Vagenas N. V, Calcium Carbonate Phase Analysis Using XRD and FT - Raman Spectroscopy Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, 2015, 125, 251-255.10.1039/a908609iSearch in Google Scholar

[49] Anand A., Lalzawmliana V., Kumar V., Das P., Devi K.B., Maji A.K., Kundu B., Roy M., Nandi S.K., Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses, J. Mech. Behav. Biomed. Mater., 2019, 89, 89-98.10.1016/j.jmbbm.2018.09.024Search in Google Scholar

[50] Fernando D., Attik N., Cresswell M., Mokbel I., Pradelle-Plasse N., Jackson P., Grosgogeat B., Colon P., Influence of network modifiers in an acetate based sol-gel bioactive glass system, Microporous Mesoporous Mater., 2018, 257, 99-109.10.1016/j.micromeso.2017.08.029Search in Google Scholar

[51] Kleitz F., Schmidt W., Schüth F., Calcination behavior of different surfactant-templated mesostructured silica materials, Microporous Mesoporous Mater., 2003, 65, 1-29.10.1016/S1387-1811(03)00506-7Search in Google Scholar

[52] Perardi A., Cerrruti M., Morterra C., Carbonate formation on solgel bioactive glass 58S and on Bioglass® 45S5, Stud. Surf. Sci. Catal., 2005, 155, 461-469.10.1016/S0167-2991(05)80173-9Search in Google Scholar

[53] Cruz M.A.E., Ruiz G.C.M., Faria A.N., Zancanela D.C., Pereira L.S., Ciancaglini P., Ramos A.P., Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces, Appl. Surf. Sci., 2016, 370, 459-468.10.1016/j.apsusc.2015.12.250Search in Google Scholar

[54] Guo Y.P., Zhou Y., Conversion of nacre powders to apatite in phosphate buffer solutions at low temperatures, Mater. Chem. Phys., 2007, 106, 88-94.10.1016/j.matchemphys.2007.05.022Search in Google Scholar

[55] Myszka B., Hurle K., Demmert B., Detsch R., Boccaccini A.R., Wolf S.E., Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid, RSC Adv., 2019, 9, 18232-18244.10.1039/C9RA01473JSearch in Google Scholar

[56] He F., Zhang J., Tian X., Wu S., Chen X., A facile magnesium-containing calcium carbonate biomaterial as potential bone graft, Colloids Surfaces B Biointerfaces, 2015, 136, 845-852.10.1016/j.colsurfb.2015.10.027Search in Google Scholar

[57] Zhang Y., Wang J., Sharma V.K., Designed synthesis of hydroxyapatite nanostructures: Bullet-like single crystal and whiskered hollow ellipsoid, J. Mater. Sci. Mater. Med., 2014, 25, 1395-1401.10.1007/s10856-014-5171-ySearch in Google Scholar

[58] Mozafari M., Banijamali S., Baino F., Kargozar S., Hill R.G., Calcium carbonate: Adored and ignored in bioactivity assessment, Acta Biomater., 2019, 91, 35-47.10.1016/j.actbio.2019.04.039Search in Google Scholar

[59] Barth E., Myrvik Q.M., Wagner W., Gristina A.G., In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials, Biomaterials, 1989, 10, 325-328.10.1016/0142-9612(89)90073-2Search in Google Scholar

[60] Kong J.-Z., Wu D., Li A.-D., Cao Y.-Q., Han P., Guo B.-L., Guo L.-C., Zhai H.-F., The Antibacterial Activity of Ta-doped ZnO Nanoparticles, Nanoscale Res. Lett., 2015, 10, 336.10.1186/s11671-015-1047-4Search in Google Scholar PubMed PubMed Central

[61] Riaz M., Zia R., Saleemi F., Hussain T., In Vitro antibacterial activity of Ta2O5 doped glass-ceramics against pathogenic bacteria, J. Alloys Compd., 2018, 764, 10-16.10.1016/j.jallcom.2018.06.053Search in Google Scholar

[62] Harrison P.L., Harrison T., Stockley I., Smith T.J., Does tantalum exhibit any intrinsic antimicrobial or antibiofilm properties?, Bone Jt. J., 2017, 99B, 1153-1156.10.1302/0301-620X.99B9.BJJ-2016-1309.R1Search in Google Scholar PubMed

[63] Yang C., Li J., Zhu C., Zhang Q., Yu J., Wang J., Wang Q., Tang J., Zhou H., Shen H., Advanced Antibacterial Activity of Biocompatible Tantalum Nanofilm via Enhanced Local Innate Immunity, Acta Biomater., 2019, 89, 403-418.10.1016/j.actbio.2019.03.027Search in Google Scholar

[64] Chudobova D., Dostalova S., Ruttkay-Nedecky B., Guran R., Rodrigo M.A.M., Tmejova K., Krizkova S., Zitka O., Adam V., Kizek R., The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses, Microbiol. Res., 2015, 170, 147-156.10.1016/j.micres.2014.08.003Search in Google Scholar

[65] Allan I., Newman H., Wilson M., Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria, Biomaterials, 2001, 22, 1683-1687.10.1016/S0142-9612(00)00330-6Search in Google Scholar

[66] Kawakami H., Yoshida K., Nishida Y., Kikuchi Y., Sato Y., Antibacterial Properties of Metallic Elements for Alloying Evaluated with Application of JIS Z 2801:2000, ISIJ Int., 2008, 48, 1299-1304.10.2355/isijinternational.48.1299Search in Google Scholar

[67] Life F.A., Microbial Ecology of Foods, Microb. Ecol. Foods, 2016.Search in Google Scholar

[68] Munukka E., Yla H., Viljanen M.K., Zhang D., Leppa O., Antibacterial effects and dissolution behavior of six bioactive glasses, J. Biomed. Mater. Res. Part A, 2009, 93, 475-483.Search in Google Scholar

[69] Ciraldo F.E., Boccardi E., Melli V., Westhauser F., Boccaccini A.R., Tackling bioactive glass excessive in vitro bioreactivity: Preconditioning approaches for cell culture tests, Acta Biomater., 2018, 75, 3-10.10.1016/j.actbio.2018.05.019Search in Google Scholar PubMed

Received: 2020-01-27
Revised: 2020-04-13
Accepted: 2020-04-25
Published Online: 2020-06-02

© 2020 Zakaria Tabia et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 2.3.2024 from
Scroll to top button