Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access October 22, 2020

Injectable bioactive glass-based pastes for potential use in bone tissue repair

  • Dilshat U. Tulyaganov , Avzal Akbarov , Nigora Ziyadullaeva , Bekhzod Khabilov and Francesco Baino EMAIL logo
From the journal Biomedical Glasses

Abstract

In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.

References

[1] Jones J.R., Brauer D.S., Hupa L., Greenspan D., Bioglass and bioactive glasses and their impact on healthcare, Int. J. Appl. Glass Sci., 2016, 7, 423-434.10.1111/ijag.12252Search in Google Scholar

[2] Fernandes H.R., Gaddam A., Rebelo A., Brazete D., Stan G.E., Ferreira J.M.F., bioactive glasses and glass-ceramics for health-care applications in bone regeneration and tissue engineering, Materials, 2018, 11, 2530.Search in Google Scholar

[3] Hench L.L., Bioceramics - from concept to clinic, J. Am. Ceram. Soc., 1991, 74, 1487-1510.10.1111/j.1151-2916.1991.tb07132.xSearch in Google Scholar

[4] Hench L.L., The story of Bioglass®, J. Mater. Sci. Mater. Med., 2006, 17, 967-978.10.1007/s10856-006-0432-zSearch in Google Scholar PubMed

[5] Fiume E., Barberi J., Verné E., Baino F., Bioactive glasses: from parent 45s5 composition to scaffold-assisted tissue-healing therapies, J. Funct. Biomater., 2018, 9, 24.10.3390/jfb9010024Search in Google Scholar PubMed PubMed Central

[6] Baino F., Hamzehlou S., Kargozar S., Bioactive glasses: where are we and where are we going? J. Funct. Biomater., 2018, 9, 25.10.3390/jfb9010025Search in Google Scholar PubMed PubMed Central

[7] Fagerlund S., Understanding the in vitro dissolution rate of glasses with respect to future clinical applications, department of chemical engineering, Åbo Akademi Process Chemistry Centre, Laboratory of Inorganic Chemistry, Åbo Akademi University, Turku, 2012.Search in Google Scholar

[8] Hench, L.L., Genetic design of bioactive glass, J. Eur. Ceram. Soc., 2009, 29, 1257-1265.10.1016/j.jeurceramsoc.2008.08.002Search in Google Scholar

[9] Hench L.L., Hench J.W., Greenspan D., Bioglass: a short history and bibliography, J. Australas. Ceram. Soc. 2004, 40, 1-42.Search in Google Scholar

[10] Zamet J., Darbar U., Griffiths G., Bulman J., Brägger U., Bürgin W., Newman H., Particulate Bioglass® as a grafting material in the treatment of periodontal intrabony defects, J. Clin. Periodontol., 1997, 24, 410-418.10.1111/j.1600-051X.1997.tb00205.xSearch in Google Scholar PubMed

[11] Profeta A.C., Huppa C., Bioactive glass in oral and maxillofacial surgery, Craniomaxillofac. Trauma Reconstr., 2016, 9, 1-14.10.1055/s-0035-1551543Search in Google Scholar PubMed PubMed Central

[12] Skallevold H.E., Rokaya D., Khurshid Z., Zafar M.S., Bioactive glass applications in dentistry, Int. J. Mol. Sci., 2019, 20, 5960.Search in Google Scholar

[13] Tadjoedin E.S., De Lange G.L., Lyaruu D., Kuiper L., Burger, E.H., High concentrations of bioactive glass material (Biogran®) vs. autogenous bone for sinus floor elevation, Clin. Oral Implants Res., 2002, 13, 428-436.10.1034/j.1600-0501.2002.130412.xSearch in Google Scholar PubMed

[14] Ashman A., Gross J.S., Synthetic osseous grafting. In: Wise D.L., Trantolo D.J., Lewandrowski KU., Gresser J.D., Cattaneo M.V., Yaszemski M.J. (eds) Biomaterials Engineering and Devices: Human Applications. Humana Press, Totowa, NJ, 2000, pp. 133-154.Search in Google Scholar

[15] Profeta, A.C., Prucher G.M., Bioactive glass in periodontal surgery and implant dentistry, Dent. Mater. J., 2015, 34, 559-571.10.4012/dmj.2014-233Search in Google Scholar PubMed

[16] Sohrabi K., Saraiya V., Laage T.A., Harris M., Blieden M., Karimbux N., An evaluation of bioactive glass in the treatment of periodontal defects: a meta-analysis of randomized controlled clinical trials, J. Periodontol., 2012, 83, 453-464.10.1902/jop.2011.110347Search in Google Scholar PubMed

[17] Subbaiah R., Thomas B., Efficacy of a bioactive alloplast, in the treatment of human periodontal osseous defects-a clinical study, Med. Oral Patol. Oral Cirugia Bucal, 2011, 16, e239-244.10.4317/medoral.16.e239Search in Google Scholar PubMed

[18] Park J.S., Suh J.J., Choi S.H., Moon I.S., Cho K.S., Kim C.K., Chai J.K., Effects of pretreatment clinical parameters on bioactive glass implantation in intrabony periodontal defects, J. Periodontol., 2001, 72, 730-740.10.1902/jop.2001.72.6.730Search in Google Scholar PubMed

[19] Anderegg C.R., Alexander D.C., Freidman M., A bioactive glass particulate in the treatment of molar furcation invasions, J. Periodontol., 1999, 70, 384-387.10.1902/jop.1999.70.4.384Search in Google Scholar PubMed

[20] Ong M.M., Eber R.M., Korsnes M.I., MacNeil R.L., Glickman G.N., Shyr Y., Wang H.L., Evaluation of a bioactive glass alloplast in treating periodontal intrabony defects, J. Periodontol., 1998, 69, 1346-1354.10.1902/jop.1998.69.12.1346Search in Google Scholar PubMed

[21] Froum S.J., Weinberg M.A., Tarnow D., Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects - a clinical study, J. Periodontol., 1998, 69, 698-709.10.1902/jop.1998.69.6.698Search in Google Scholar PubMed

[22] Baino F., Bioactive glasses - when glass science and technology meet regenerative medicine, Ceram. Int., 2018, 44, 14953-14966.10.1016/j.ceramint.2018.05.180Search in Google Scholar

[23] Sculean A., Windisch P., Keglevich T., Gera I., Clinical and histo-logic evaluation of an enamel matrix protein derivative combined with a bioactive glass for the treatment of intrabony periodontal defects in humans, Int. J. Period. Restorative Dent., 2005, 25, 139-147.Search in Google Scholar

[24] Tulyaganov D.U., Makhkamov M.E., Urazbaev A., Goel A., Ferreira J.M.F., Synthesis, processing and characterization of a bioactive glass composition for bone regeneration, Ceram. Int., 2013, 39, 2519-2526.10.1016/j.ceramint.2012.09.011Search in Google Scholar

[25] Schmitz S.I., Widholz B., Essers C., Becker M., Tulyaganov D.U., Moghaddama A., Gonzalo de Juan I., Westhauser F., Superior biocompatibility and comparable osteoinductive properties: sodium-reduced fluoride-containing bioactive glass belonging to the CaO–MgO–SiO2 system as a promising alternative to 45S5 bioactive glass, Bioactive Mater., 2020, 5, 55-65.10.1016/j.bioactmat.2019.12.005Search in Google Scholar PubMed PubMed Central

[26] Gonzalo-Juan I., Tulyaganov D.U., Balan C., Linser R., Ferreira J.M.F., Riedel R., Ionescu E., Tailoring the viscoelastic properties of injectable biocomposites: a spectroscopic assessment of the interactions between organic carriers and bioglass particles, Mater. Design, 2016, 97, 45-50.10.1016/j.matdes.2016.02.085Search in Google Scholar

[27] Tulyaganov D.U., Reddy A.A., Siegel R., Ionescu E., Riedel R., Ferreira J.M.F., Synthesis and in vitro bioactivity assessment of injectable bioglass-organic pastes for bone tissue repair, Ceram. Int., 2015, 41, 9373-9382.10.1016/j.ceramint.2015.03.312Search in Google Scholar

[28] Tas A.G., Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids, Biomaterials, 2000, 21, 1429-1438.10.1016/S0142-9612(00)00019-3Search in Google Scholar

[29] Camargo A.F.F., Baptista A.M., Natalino R., Camargo O.P., Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits, Acta Ortop. Bras., 2015, 23, 202-207.10.1590/1413-785220152304147538Search in Google Scholar

[30] Bellucci D., Cannillo V., Anesi A., Salvatori R., Chiarini L., Manfredini T., Zaffe D., Bone Regeneration by novel bioactive glasses containing strontium and/or magnesium: a preliminary in-vivo study, Materials, 2018, 11, 2223.Search in Google Scholar

[31] Kharkova A., Grjibovski A.M., Analysis of two independent samples using stata software: non parametric criteria, Ekologiya Cheloveka (Human Ecology), 2014, 4, 60-63. [in Russian].10.17816/humeco17255Search in Google Scholar

[32] Tilocca A, Structural models of bioactive glasses from molecular dynamics simulations, Proc. R. Soc. A, 2009, 465, 1003-1027.10.1098/rspa.2008.0462Search in Google Scholar

[33] Kansal I., Tulyaganov D.U., Goel A., Pascual M.J., Ferreira J.M.F., Structural analysis and thermal behavior of diopsidefluorapatite-wollastonite glasses and glass-ceramics, Acta Bio-mater., 2010, 6, 4380-4388.10.1016/j.actbio.2010.05.019Search in Google Scholar

[34] Dimitriadis K., Moschovas D., Tulyaganov D.U., Agathopoulos S., development of novel bioactive glass-ceramics in the Na2O/K2OCaO-MgO-SiO2-P2O5-CaF2 system, J. Non-Cryst. Solids, 2020, 533, 119936.10.1016/j.jnoncrysol.2020.119936Search in Google Scholar

[35] Stoch L., Sroda M., Infrared spectroscopy in the investigation of oxide glasses structure, J. Mol. Struct., 1999, 511-512, 77-84.10.1016/S0022-2860(99)00146-5Search in Google Scholar

[36] Agathopoulos S., Tulyaganov D.U., Ventura J.M.G., Kannan S., Saranti A., Karakassides M.A., et al. Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3,Na2O, CaF2 and P2O5 additives, J. Non-Cryst. Solids, 2006, 352, 322-328.10.1016/j.jnoncrysol.2005.12.003Search in Google Scholar

[37] Merzbacher C.I., White W.B., Structure of Na in aluminosilicate glasses – a far-infrared reflectance spectroscopic study, Am. Mineral., 1988, 73, 1089-1094.Search in Google Scholar

[38] Furukawa T., Brawer S.A., White W.B., The structure of lead silicate glasses determined by vibrational spectroscopy, J. Mater. Sci., 1978, 13, 268-282.10.1007/BF00647770Search in Google Scholar

[39] Hidawati E.N., Sakinah A.M.M., Treatment of glycerin pitch from biodiesel production, Int. J. Chem. Environ. Eng., 2011, 2, 309-313.Search in Google Scholar

[40] Tulyaganov D., Abdukayumov K., Ruzimuradov O., Hojamberdiev M., Ionescu E., Riedel R., Effect of alumina incorporation on the surface mineralization and degradation of a bioactive glass (CaOMgO-SiO2-Na2O-P2O5-CaF2)-glycerol paste, Materials, 2017, 10, 1324.Search in Google Scholar

[41] Olhero S.M., Ferreira J.M.F., Particle segregation phenomena occurring during the slip casting process, Ceram. Int., 2002, 28, 377-386.10.1016/S0272-8842(01)00105-5Search in Google Scholar

[42] Olhero S.M., Ferreira J.M.F., Influence of particle size distribution on rheology and particle packing of silica-based suspensions, Powder Technol., 2004, 139, 69-75.10.1016/j.powtec.2003.10.004Search in Google Scholar

[43] Weinzapfel B., Son-Hing J.P., Armstrong D.G., et al. Fusion rates after thoracoscopic release and bone graft substitutes in idiopathic scoliosis, Spine, 2008, 33, 1079-1083.10.1097/BRS.0b013e31816f69b3Search in Google Scholar PubMed

[44] Davison N., Yuan H., De Bruijn J.D., Barrere-de Groot F., In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers, Acta Biomater., 2012, 8, 2759-2769.10.1016/j.actbio.2012.04.007Search in Google Scholar PubMed

[45] Park H.W., Lee J.K., Moon S.J., Seo S.K., Lee J.H., Kim S.H., The efficacy of the synthetic interbody cage and grafton for anterior cervical fusion. Spine, 2009, 34, E591-595.10.1097/BRS.0b013e3181ab8b9aSearch in Google Scholar PubMed

[46] Heikkilä J.T., Aho H.J., Yli-Urpo A., Happonen R.P., Aho A.J., Bone formation in rabbit cancellous bone defects filled with bioactive glass granules, Acta Orthop. Scand., 1995, 66, 46310.3109/17453679508995588Search in Google Scholar PubMed

[47] Bellucci D., Cannillo V., Anesi A., Salvatori R., Chiarini L., Manfredini T., Zaffe D., Bone regeneration by novel bioactive glasses containing strontium and/or magnesium: a preliminary in-vivo study, Materials, 2018, 11, 2223.Search in Google Scholar

[48] Crovace M.C., Souza M.T., Chinaglia C.R., Peitl O., Zanotto E.D., Biosilicate® — a multipurpose, highly bioactive glass-ceramic. in vitro, In vivo and clinical trials, J. Non-Cryst. Solids 2016, 432, 90-110.10.1016/j.jnoncrysol.2015.03.022Search in Google Scholar

[49] Perez J.P., Kouroupis, D., Li D.J., Best T.M., Kaplan L., Correa D., Tissue engineering and cell-based therapies for fractures and bone defects, Front. Bioeng. Biotechnol., 2018, 6, 105.10.3389/fbioe.2018.00105Search in Google Scholar PubMed PubMed Central

[50] Shapiro F., Wu J.Y., Woven bone overview: structural classification based on its integral role in development, repair and pathological bone formation throughout vertebrate groups, Eur. Cells Mater., 2019, 38, 137-167.10.22203/eCM.v038a11Search in Google Scholar PubMed

[51] Knowles J.C., Phosphate based glasses for biomedical applications, J. Mater. Chem., 2003, 13, 2395-2401.10.1039/b307119gSearch in Google Scholar

[52] Abou Neel E.A., Pickup D.M., Valappil S.P., Newport R.J., Knowles J.C., Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem., 2009, 19, 690-701.10.1039/B810675DSearch in Google Scholar

[53] Wheeler, D.L., Eschbach E.J., Hoellrich R.G., Montfort M.J., Chamberland D.L., Assessment of resorbable bioactive material for grafting of critical-size cancellous defects, Orthop. Res., 2000, 18, 140-148.10.1002/jor.1100180120Search in Google Scholar PubMed

[54] Heikkila J.T., Kukkonen, J., Aho, A.J., Moisander, S., Kyyronen, T., Mattila, K., Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study, J. Mater. Sci. Mater. Med., 2011, 22, 1073-1080.10.1007/s10856-011-4272-0Search in Google Scholar PubMed

Received: 2020-06-25
Revised: 2020-08-08
Accepted: 2020-09-03
Published Online: 2020-10-22

© 2020 Dilshat U. Tulyaganov et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 9.2.2023 from https://www.degruyter.com/document/doi/10.1515/bglass-2020-0003/html
Scroll Up Arrow