Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access November 18, 2020

Yttrium doped phosphate-based glasses: structural and degradation analyses

  • Abul Arafat , Sabrin A. Samad , Jeremy J. Titman , Andrew L. Lewis , Emma R. Barney and Ifty Ahmed EMAIL logo
From the journal Biomedical Glasses


This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.


[1] Knowles J. C., Phosphate based glasses for biomedical applications, J. Mater. Chem., 2003, 13, 2395–2401.10.1039/b307119gSearch in Google Scholar

[2] Franks K., Salih V., Knowles J. C., Olsen I., The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. Mater. Sci.: Mater. Med., 2002, 13, 549–556.10.1023/A:1015122709576Search in Google Scholar

[3] Rajendran V., Devi A. V. G., Azooz M., El-Batal F. H., Physicochemical studies of phosphate based P2O5–Na2O–CaO–TiO2 glasses for biomedical applications, J. Non-Crys. Sol., 2007, 353, 77–84.10.1016/j.jnoncrysol.2006.08.047Search in Google Scholar

[4] Neel E. A. A., O’Dell L. A., Smith M. E., Knowles J. C., Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications, J. Mater. Sci.: Mater. Med., 2008, 19, 1669–1679.10.1007/s10856-007-3313-1Search in Google Scholar PubMed

[5] Vitale-Brovarone C., Novajra G., Milanese D., Lousteau J., Knowles J. C., Novel phosphate glasses with different amounts of TiO2 for biomedical applications: Dissolution tests and proof of concept of fibre drawing, Mater. Sci. & Eng. C, 2011, 31, 434–442.10.1016/j.msec.2010.11.001Search in Google Scholar

[6] Kiani A., Hanna J. V, King S. P., Rees G. J., Smith M. E., Roohpour N., et al., Structural characterization and physical properties of P2O5–CaO–Na2O–TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies, Act. Biomater., 2012, 8, 333–340.10.1016/j.actbio.2011.08.025Search in Google Scholar PubMed

[7] Kiani A., Cahill L. S., Neel E. A. A., Hanna J. V, Smith M. E., Knowles J. C., Physical properties and MAS-NMR studies of titanium phosphate-based glasses, Mater. Chem. & Phy., 2010, 120, 68–74.10.1016/j.matchemphys.2009.10.023Search in Google Scholar

[8] Devi A. V. G., Rajendran V., Rajendran N., Structure, solubility and bioactivity in TiO2-doped phosphate-based bioglasses and glass–ceramics, Mater. Chem. & Phy., 2010, 124, 312–318.10.1016/j.matchemphys.2010.06.038Search in Google Scholar

[9] ElBatal F. H., Hamdy Y. M., Marzouk S. Y., UV–visible and infrared absorption spectra of transition metals-doped lead phosphate glasses and the effect of gamma irradiation, J. Non-Crys. Sol., 2009, 355, 2439–2447.10.1016/j.jnoncrysol.2009.08.044Search in Google Scholar

[10] Metwalli E., Karabulut M., Sidebottom D. L., Morsi M. M., Brow R. K., Properties and structure of copper ultraphosphate glasses, J. Non-Crys. Sol., 2004, 344, 128–134.10.1016/j.jnoncrysol.2004.07.058Search in Google Scholar

[11] Kasuga T., Abe Y., Calcium phosphate invert glasses with soda and titania, J. Non-Crys. Sol., 1999, 243, 70–74.10.1016/S0022-3093(98)00820-5Search in Google Scholar

[12] Ahmed I., Parsons A., Jones A., Walker G., Scotchford C., Rudd C., Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses, J. Biomater. App., 2010, 24, 555–575.10.1177/0885328209102761Search in Google Scholar PubMed

[13] Parsons A. J., Evans M., Rudd C. D., Scotchford C. A., Synthesis and degradation of sodium iron phosphate glasses and their in vitro cell response, J. Biomed. Mater. Res. A, 2004, 71, 283–291.10.1002/jbm.a.30161Search in Google Scholar PubMed

[14] Fu Y., Christie J. K., Atomic structure and dissolution properties of yttrium-containing phosphate glasses, Int. J. App. Gla. Sci., 2017, 8, 412–417.10.1111/ijag.12325Search in Google Scholar

[15] Riaz A., Lewandowski R. J., Kulik L., Salem R., Yttrium-90 radioembolization using TheraSphere® in the management of primary and secondary liver tumors, J. Nuc. Med. & Mol. Ima., 2009, 53, 311.Search in Google Scholar

[16] Riaz A., Kulik L. M., Mulcahy M. F., Lewandowski R. J., Salem R., Yttrium-90 radioembolization in the management of liver malignancies, Sem. Onc., 2010, 94–101.10.1053/j.seminoncol.2010.03.006Search in Google Scholar PubMed

[17] Salem R., Hunter R. D., Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review, Int. J. Rad. Onc.* Bio.* Phy., 2006, 66, S83–S88.10.1016/j.ijrobp.2006.02.061Search in Google Scholar PubMed

[18] Hyatt M. J., Day D.E., Glass properties in the Yttria-Alumina-Silica system, J. Am. Cer. Soc., 1987, 70, C–283.10.1111/j.1151-2916.1987.tb04901.xSearch in Google Scholar

[19] Erbe E. M., Day D. E., Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation, J. Biomed. Mater. Res., 1993, 27, 1301–1308.10.1002/jbm.820271010Search in Google Scholar PubMed

[20] Kawashita M., Matsui N., Li Z., Miyazaki T., Novel synthesis of yttrium phosphate microspheres for radioembolization of cancer, Mater. Sci. & Eng., 2011, 192003.10.1088/1757-899X/18/19/192003Search in Google Scholar

[21] Triller J., Baer H. U., Geiger L., Kinser J., Rösler H., Blumgart L. H., Radioembolisation of hepatocellular carcinoma with 90-yttrium resin particles, Eur. Rad., 1995, 5, 603–608.10.1007/BF00190925Search in Google Scholar

[22] Burrill J., Hafeli U., Liu D. M., Advances in radioembolization-Embolics and isotopes, J. Nucl. Med. Rad. Ther., 2011, 2, 107.10.4172/2155-9619.1000107Search in Google Scholar

[23] Burke C. W., Doyle F. H., Joplin G. F., Arnot R. N., Macerlean D. P., Fraser T. R., Cushing’s disease: Treatment by pituitary implantation of radioactive gold or yttrium seeds, Int. J. Med., 1973, 42, 693–714.Search in Google Scholar

[24] Taylor W. J., Corkill M. M., Rajapaske C. N., A retrospective review of yttrium-90 synovectomy in the treatment of knee arthritis., Bri. J. Rhe., 1997, 36, 1100–1105.10.1093/rheumatology/36.10.1100Search in Google Scholar

[25] McDevitt M. R., Chattopadhyay D., Jaggi J. S., Finn R. D., Zanzonico P. B., Villa C., et al., PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice, Pl. One, 2007, 2, e907.10.1371/journal.pone.0000907Search in Google Scholar

[26] Tickner B. J., Stasiuk G. J., Duckett S. B., Angelovski G., The use of yttrium in medical imaging and therapy: historical background and future perspectives, Chem. Soc. Rev., 2020.10.1039/C9CS00840CSearch in Google Scholar

[27] Salem R., Thurston K. G., Carr B. I., Goin J. E., Geschwind J. F. H., Yttrium-90 microspheres: radiation therapy for unresectable liver cancer, J. Vas. & Inter. Rad., 2002, 13, S223–S229.10.1016/S1051-0443(07)61790-4Search in Google Scholar

[28] Borgonovo A. E., Fabbri A., Vavassori V., Censi R., Maiorana C., Multiple teeth replacement with endosseous one-piece yttrium-stabilized zirconia dental implants, Med. Oral, Pato. Oral y Cir. Buc., 2012, 17, e981.10.4317/medoral.18194Search in Google Scholar PubMed PubMed Central

[29] Schena E., Saccomandi P., Fong Y., Laser ablation for cancer: past, present and future, J. Func. Biomater., 2017, 8, 19.10.3390/jfb8020019Search in Google Scholar PubMed PubMed Central

[30] Schubert D., Dargusch R., Raitano J., Chan S. W., Cerium and yttrium oxide nanoparticles are neuroprotective, Biochem. & Biophys. Res. Comm., 2006, 342, 86–91.10.1016/j.bbrc.2006.01.129Search in Google Scholar PubMed

[31] Cochran K. W., Doull J., Mazur M., DuBois K. P., Acute toxicity of zirconium, columbium, strontium, lanthanum, cesium, tantalum and yttrium., Arch. Ind. Hyg. & Occ. Med., 1950, 1, 637–650.Search in Google Scholar

[32] DuBois K. P., Chemical toxicity of salts of lanthanum, yttrium and some other rare metals to animals, Rare Ear. Biochem. & Med. Res., 1956, 12, 91–98.Search in Google Scholar

[33] Singh S., Kalia G., Singh K., Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses, J. Mol. Str., 2015, 1086, 239–245.10.1016/j.molstruc.2015.01.031Search in Google Scholar

[34] Simon V., Eniu D., Takács A., Magyari K., Neumann M., Simon S., X-ray photoemission study of yttrium contained in radiotherapy systems, J. Opto. & Adv. Mat., 2005.Search in Google Scholar

[35] Fayad A. M., Abd-Allah W. M., Moustafa F. A., Effect of Gamma Irradiation on Structural and Optical Investigations of Borosilicate Glass Doped Yttrium Oxide, Silicon, 2018.10.1007/s12633-016-9533-6Search in Google Scholar

[36] Ahmed I., Lewis M., Olsen I., Knowles J. C., Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system, Biomater., 2004, 25, 491–499.10.1016/S0142-9612(03)00546-5Search in Google Scholar

[37] Koudelka L., Rösslerová I., Holubová J., Mošner P., Montagne L., Revel B., Structural study of PbO–MoO3–P2O5 glasses by Raman and NMR spectroscopy, J. Non-Crys. Sol., 2011, 357, 2816–2821.10.1016/j.jnoncrysol.2011.03.006Search in Google Scholar

[38] Brauer D. S., Rüssel C., Kraft J., Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: Experimental and modeling using artificial neural networks, J. Non-Crys. Sol., 2007, 353, 263–270.10.1016/j.jnoncrysol.2006.12.005Search in Google Scholar

[39] Döhler F., Mandlule A., van Wüllen L., Friedrich M., Brauer D. S., 31 P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses, J. Mater. Chem. B, 2015, 3, 1125–1134.10.1039/C4TB01757ASearch in Google Scholar

[40] Fu Y., Christie J. K., Atomic structure and dissolution properties of yttrium-containing phosphate glasses, Int. J. App. Gla. Sci., 2017.10.1111/ijag.12325Search in Google Scholar

[41] Okura T., TANAKA M., MONMA H., YAMASHITA K., SUDOH G., New superionic conducting glass-ceramics in the system Na2O-Y2O3-Sm2O3-P2O5-SiO2: crystallization and ionic conductivity, Nip. Ser. Kyo. Gak. Ron., 2003, 111, 257–261.10.2109/jcersj.111.257Search in Google Scholar

[42] Nechaev G. V, Vlasova S. G., Reznitskikh O. G., Conductivity in sodium-yttrium-silicate and sodium-yttrium-phosphate glass, Gla. Phy. & Chem., 2015, 41, 64–67.10.1134/S1087659615010174Search in Google Scholar

[43] SUDA S., YAMASHITA K., UMEGAKI T., Synthesis of Na+ Superionic Conductors in the Na2O-Y2O3-P2O5-SiO2 System by using metal alkoxides and Crystallization Processes from Dried Gel, Phos. Res. Bull., 1993, 3, 97–102.10.3363/prb1992.3.0_97Search in Google Scholar

[44] Arafat A., Samad S.A., Wadge M.D., Islam M.T., Lewis A.L., Barney E.R., et al., Thermal and crystallization kinetics of yttrium-doped phosphate-based glasses, Int. J. App. Gla. Sci., 2019.10.1111/ijag.14163Search in Google Scholar

[45] Zemenová P., Král R., Nitsch K., Knížek K., Cihlář A., Bystřický A., Characterization and crystallization kinetics of Er-doped Li 2 O–Y 2 O 3–P 2 O 5 glass studied by non-isothermal DSC analysis, J. Ther. Ana. & Cal., 2016, 125, 1431–1437.10.1007/s10973-016-5730-1Search in Google Scholar

[46] Martin R. A., Salmon P. S., Carroll D. L., Smith M. E., Hannon A. C., Structure and thermal properties of yttrium alumino-phosphate glasses, J. Phy.: Con. Mat., 2008, 20, 115204.10.1088/0953-8984/20/11/115204Search in Google Scholar

[47] Brow R. K., the structure of simple phosphate glasses, J. Non-Crys. Sol., 2000, 263, 1–28.10.1016/S0022-3093(99)00620-1Search in Google Scholar

[48] Shih P. Y., Ding J. Y., Lee S. Y., 31P MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and meta-phosphate glasses, Mater. Chem. & Phy., 2003, 80, 391–396.10.1016/S0254-0584(03)00098-1Search in Google Scholar

[49] Pickup D. M., Valappil S. P., Moss R. M., Twyman H. L., Guerry P., Smith M. E., et al., Preparation, structural characterisation and antibacterial properties of Ga-doped sol–gel phosphate-based glass, J. Mater. Sci., 2009, 44, 1858–1867.10.1007/s10853-008-3237-2Search in Google Scholar

[50] Smith J. M., King S. P., Barney E. R., Hanna J. V, Newport R. J., Pickup D. M., Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content, J. Chem. Phy., 2013, 138, 34501.10.1063/1.4774330Search in Google Scholar

[51] Yung S. W., Huang Y. S., Lee Y. M., Lai Y. S., An NMR and Raman spectroscopy study of Li 2 O–SrO–Nb 2 O 5–P 2 O 5 glasses, RSC Adv., 2013, 3, 21025–21032.10.1039/c3ra43503bSearch in Google Scholar

[52] Hasan M. S., Ahmed I., Parsons A. J., Walker G. S., Scotchford C. A., Material characterisation and cytocompatibility assessment of quinternary phosphate glasses, J. Mater. Sci.: Mater. Med., 2012, 23, 2531–2541.10.1007/s10856-012-4708-1Search in Google Scholar

[53] Byun J. O., Kim B. H., Hong K. S., Jung H. J., Lee S., Izyneev A. A., Properties and structure of RO–Na2O–Al2O3–P2O5 (R = Mg, Ca, Sr, Ba) glasses, J. Non-Crys. Sol., 1995, 190, 288–295.10.1016/0022-3093(95)00280-4Search in Google Scholar

[54] Moustafa Y. M., El-Egili K., Infrared spectra of sodium phosphate glasses, J. Non-Crys. Sol., 1998, 240, 144–153.10.1016/S0022-3093(98)00711-XSearch in Google Scholar

[55] Baia L., Muresan D., Baia M., Popp J., Simon S., Structural properties of silver nanoclusters–phosphate glass composites, Vib. Spec., 2007, 43, 313–318.10.1016/j.vibspec.2006.03.006Search in Google Scholar

[56] Ilieva D., Jivov B., Bogachev G., Petkov C., Penkov I., Dimitriev Y., Infrared and Raman spectra of Ga2O3–P2O5 glasses, J. Non-Crys. Sol., 2001, 283, 195–202.10.1016/S0022-3093(01)00361-1Search in Google Scholar

[57] Abou Neel E. A., Chrzanowski W., Pickup D. M., O’Dell L. A., Mordan N. J., Newport R. J., et al., Structure and properties of strontium-doped phosphate-based glasses, J. Ro. Soc. Inter., 2009, 6, 435–446.10.1098/rsif.2008.0348Search in Google Scholar PubMed PubMed Central

[58] Brauer D. S., Karpukhina N., Law R. V, Hill R. G., Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications, J. Non-Crys. Sol., 2010, 356, 2626–2633.10.1016/j.jnoncrysol.2010.03.022Search in Google Scholar

[59] McIntosh I. M., Nichols A. R. L., Tani K., Llewellin E. W., Accounting for the species-dependence of the 3500 cm–1 H2Ot infrared molar absorptivity coeflcient: Implications for hydrated volcanic glasses, J. Ear. & Pla. Mater., 2017, 102, 1677–1689.10.2138/am-2017-5952CCBYSearch in Google Scholar

[60] Shakeri M. S., Rezvani M., Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions, Spec. Act. Part A: Mol. & Biomol. Spec., 2011, 79, 1920–1925.10.1016/j.saa.2011.05.090Search in Google Scholar PubMed

[61] Mahdy E. A., Ibrahim S., Influence of Y2O3 on the structure and properties of calcium magnesium aluminosilicate glasses, J. Mol. Struc., 2012, 1027, 81–86.10.1016/j.molstruc.2012.05.055Search in Google Scholar

[62] Kaur G., Kumar M., Arora A., Pandey O. P., Singh K., Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO– xB2O3–(10- x) Y2O3 glasses and glass ceramics, J. Non-Crys. Sol., 2011, 357, 858–863.10.1016/j.jnoncrysol.2010.11.103Search in Google Scholar

[63] Eniu D., Simon S., Structural properties of melt versus sol-gel derived yttrium aluminosilicate systems, Ceram. Int., 2018, 44, 9581–9584.10.1016/j.ceramint.2018.02.181Search in Google Scholar

[64] Lee S., Maeda H., Obata A., Ueda K., Narushima T., Kasuga T., Structures and dissolution behaviors of MgO–CaO–P2O5–Nb2O5 glasses, J. Non-Crys. Sol., 2016, 438, 18–25.10.1016/j.jnoncrysol.2016.02.006Search in Google Scholar

[65] Carta D., Knowles J. C., Smith M. E., Newport R. J., Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials, J. Non-Crys. Sol., 2007, 353, 1141–1149.10.1016/j.jnoncrysol.2006.12.093Search in Google Scholar

[66] Abo-Naf S. M., Ghoneim N. A., Ei-Batal H. A., Preparation and characterization of sol–gel derived glasses in the ternary Na 2 O–Al 2 O 3–P 2 O 5 system, J. Mater. Sci.: Mater. Elec., 2004, 15, 273–282.10.1023/B:JMSE.0000024226.51362.deSearch in Google Scholar

[67] Baskaran G. S., Mohan N. K., Rao V. V., Rao D. K., Veeraiah N., Influence of aluminium ions on physical properties of PbO-P 2 O 5-As 2 O 3 glasses, Euro. Phy. J.-App. Phy., 2006, 34, 97–106.10.1051/epjap:2006049Search in Google Scholar

[68] Lin C. C., Shen P., Chang H. M., Yang Y. J., Composition dependent structure and elasticity of lithium silicate glasses: effect of ZrO2 additive and the combination of alkali silicate glasses, J. Euro. Ceram. Soc., 2006, 26, 3613–3620.10.1016/j.jeurceramsoc.2006.01.010Search in Google Scholar

[69] Christie J. K., de Leeuw N. H., Effect of strontium inclusion on the bioactivity of phosphate-based glasses, J. Mater. Sci., 2017, 52, 9014–9022.10.1007/s10853-017-1155-xSearch in Google Scholar PubMed PubMed Central

[70] Christie J. K., Tilocca A., Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses, J. Mater. Chem., 2012, 22, 12023–12031.10.1039/c2jm31561kSearch in Google Scholar

[71] Li Y., Weng W., Santos J. D., Lopes A. M., Structural studies of Na2O–TiO2–CaO–P2O5 system glasses investigated by FTIR and FT-Raman, Physics and Chemistry of Glasses-Euro. J. Gla. Sci. & Tech. Part B, 2008, 49, 41–45.Search in Google Scholar

[72] Doweidar H., Moustafa Y. M., El-Egili K., Abbas I., Infrared spectra of Fe2O3–PbO–P2O5 glasses, Vib. Spec., 2005, 37, 91–9610.1016/j.vibspec.2004.07.002Search in Google Scholar

[73] Lee I. H., Shin S. H., Foroutan F., Lakhkar N. J., Gong M. S., Knowles J. C., Effects of magnesium content on the physical, chemical and degradation properties in a MgO- CaO- Na2O- P2O5 glass system, J. Non-Crys. Sol., 2013, 363, 57–63.10.1016/j.jnoncrysol.2012.11.036Search in Google Scholar

[74] Ivascu C., Gabor A. T., Cozar O., Daraban L., Ardelean I., FT-IR, Raman and thermoluminescence investigation of P2O5–BaO– Li2O glass system, J. Mol. Struc., 2011, 993, 249–253.10.1016/j.molstruc.2010.11.047Search in Google Scholar

[75] Rani S., Sanghi S., Agarwal A., Seth V. P., Study of optical band gap and FTIR spectroscopy of Li2O ˙ Bi2O3 ˙ P2O5 glasses, Spec. Act. Part A: Mol. & Biomol. Spec., 2009, 74, 673–677.10.1016/j.saa.2009.07.023Search in Google Scholar PubMed

[76] Chahine A., Et-Tabirou M., Pascal J. L., FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses, Mater. Let., 2004, 58, 2776–2780.10.1016/j.matlet.2004.04.010Search in Google Scholar

[77] O’Dell L. A., Neel E. A. A., Knowles J. C., Smith M. E., Identification of phases in partially crystallised Ti-, Sr-and Zn-containing sodium calcium phosphates by two-dimensional NMR, Mater. Chem. & Phy., 2009, 114, 1008–1015.10.1016/j.matchemphys.2008.11.002Search in Google Scholar

[78] Ahmed I., Lewis M. P., Nazhat S. N., Knowles J. C., Quantification of anion and cation release from a range of ternary phosphate-based glasses with fixed 45 mol% P2O5, J. Biomater. App., 2005, 20, 65–80.10.1177/0885328205049396Search in Google Scholar

[79] Ahmed I., Neel E. A. A., Valappil S. P., Nazhat S. N., Pickup D. M., Carta D., et al., The structure and properties of silver-doped phosphate-based glasses, J. Mater. Sci., 2007, 42, 9827–983510.1007/s10853-007-2008-9Search in Google Scholar

[80] Abrahams I., Franks K., Hawkes G. E., Philippou G., Knowles J., Bodart P., et al., 23Na, 27Al and 31P NMR and X-ray powder diffraction study of Na/Ca/Al phosphate glasses and ceramics, J. Mater. Chem., 1997.10.1039/a608325kSearch in Google Scholar

[81] Stagia L., Riccia P. C., Chiriua D., Napolitanob E., Enzo S., Structure Solution of NaYO2 Compound Prepared by Soft Chemistry from X-Ray Diffraction Powder Data., CHEM. ENG., 2014, 41.Search in Google Scholar

[82] Ting C. C., Chang S. P., Li W. Y., Wang C. H., Enhanced performance of indium zinc oxide thin film transistor by yttrium doping, App. Sur. Sci., 2013, 284, 397–404.10.1016/j.apsusc.2013.07.111Search in Google Scholar

[83] Serra J., González P., Liste S., Serra C., Chiussi S., León B., et al., FTIR and XPS studies of bioactive silica based glasses, J. Non-Crys. Sol., 2003, 332, 20–27.10.1016/j.jnoncrysol.2003.09.013Search in Google Scholar

[84] Duffy J. A., Variable electronegativity of oxygen in binary oxides: possible relevance to molten fluorides, J. Chem. Phy., 1977, 67, 2930–2931.10.1063/1.435169Search in Google Scholar

[85] Dalby K. N., Nesbitt H. W., Zakaznova-Herzog V. P., King P. L., Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS: Implications for O and Si speciation, Geo. et Cosmo. Act., 2007, 71, 4297–4313.10.1016/j.gca.2007.07.005Search in Google Scholar

[86] Sharma K., Deo M. N., Kothiyal G. P., Effect of iron oxide addition on structural properties of calcium silico phosphate glass/glass-ceramics, J. Non-Crys. Sol., 2012, 358, 1886–1891.10.1016/j.jnoncrysol.2012.05.034Search in Google Scholar

[87] Byun J. O., Kim B. H., Hong K. S., Jung H. J., Lee S. W., Izyneev A. A., Properties and structure of RONa2OAl2O3P2O5 (R = Mg, Ca, Sr, Ba) glasses, J. Non-Crys. Sol., 1995.10.1016/0022-3093(95)00280-4Search in Google Scholar

[88] Lucacel R.C., Ponta O., Licarete E., Radu T., Simon V., Synthesis, structure, bioactivity and biocompatibility of melt-derived P2O5-CaO-B2O3-K2O-MoO3 glasses, J. Non-Crys. Sol., 2016.10.1016/j.jnoncrysol.2016.02.022Search in Google Scholar

[89] Parsons A. J., Burling L. D., Scotchford C. A., Walker G. S., Rudd C. D., Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts, J. Non-Crys. Sol., 2006, 352, 5309–5317.10.1016/j.jnoncrysol.2006.08.043Search in Google Scholar

[90] Shi Q., Kang J., Qu Y., Liu S., Khater G. A., Li S., et al., Effect of rare-earth oxides on structure and chemical resistance of calcium aluminophosphate glasses, J. Non-Crys. Sol., 2018, 491, 71–78.10.1016/j.jnoncrysol.2018.04.010Search in Google Scholar

[91] Du J., Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses, J. Ame. Ceram. Soc., 2009, 92, 87–95.10.1111/j.1551-2916.2008.02853.xSearch in Google Scholar

[92] Shelby J. E., Introduction to glass science and technology, Roy. Soc. Chem., 2005.Search in Google Scholar

[93] Uo M., Mizuno M., Kuboki Y., Makishima A., Watari F., Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses, Biomater., 1998, 19, 2277–2284.10.1016/S0142-9612(98)00136-7Search in Google Scholar

[94] Dimitrov V., Komatsu T., Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides, J. Sol. Sta. Chem., 2012, 196, 574–578.10.1016/j.jssc.2012.07.030Search in Google Scholar

[95] Costantini A., Fresa R., Buri A., Branda F., Effect of the substitution of Y2O3 for CaO on the bioactivity of 2.5 CaO ˙ 2SiO2 glass, Biomater., 1997, 18, 453–458.10.1016/S0142-9612(96)00118-4Search in Google Scholar

[96] Vallet-Regi M., Salinas A. J., Roman J., Gil M., Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO 2-P 2 O 5 solgel glasses, J. Mater. Chem., 1999, 9, 515–518.10.1039/a808679fSearch in Google Scholar

[97] Souza M. T., Crovace M. C., Schröder C., Eckert H., Peitl O., Zan-otto E. D., Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses, J. Non-Crys. Sol., 2013, 382, 57–65.10.1016/j.jnoncrysol.2013.10.001Search in Google Scholar

[98] Ma J., Chen C. Z., Wang D. G., Hu J. H., Effect of magnesia on structure, degradability and in vitro bioactivity of CaO–MgO– P2O5–SiO2 system ceramics, Mater. Let., 2011, 65, 130–133.10.1016/j.matlet.2010.09.040Search in Google Scholar

[99] Metwalli E., Brow R. K., Modifier effects on the properties and structures of aluminophosphate glasses, J. Non-Crys. Sol., 2001, 289, 113–122.10.1016/S0022-3093(01)00704-9Search in Google Scholar

[100] Cozien-Cazuc S., Parsons A. J., Walker G. S., Jones I. A., Rudd C. D., Real-time dissolution of P40Na20Ca16Mg24 phosphate glass fibers, J. Non-Crys. Sol., 2009, 355, 2514–2521.10.1016/j.jnoncrysol.2009.08.017Search in Google Scholar

[101] Huang L., Qiao D., Green B. A., Liaw P. K., Wang J., Pang S., et al., Bio-corrosion study on zirconium-based bulk-metallic glasses, Intermet., 2009, 17, 195–199.10.1016/j.intermet.2008.07.020Search in Google Scholar

[102] Crew M. C., Steinert H. E., Hopkins B. S., The solubility of Yttrium salts, J. Phy. Chem., 2002, 29, 34–38.10.1021/j150247a004Search in Google Scholar

[103] Malik J., Tilocca A., Hydration effects on the structural and vibrational properties of yttrium aluminosilicate glasses for in situ radiotherapy, J. Phy. Chem. B, 2013, 117, 14518–14528.10.1021/jp4073203Search in Google Scholar PubMed

[104] Ahmed I., Cronin P. S., Abou Neel E. A., Parsons A. J., Knowles J. C., Rudd C. D., Retention of mechanical properties and cyto-compatibility of a phosphate-based glass fiber/polylactic acid composite, J. Biomed. Mater. Res. Part B: App. Biomater., 2009, 89, 18–27.10.1002/jbm.b.31182Search in Google Scholar PubMed

[105] Neel E. A. A., Ahmed I., Blaker J. J., Bismarck A., Boccaccini A. R., Lewis M. P., et al., Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres, Act. Biomater., 2005, 1, 553–563.10.1016/j.actbio.2005.05.001Search in Google Scholar PubMed

[106] Felfel R. M., Ahmed I., Parsons A. J., Palmer G., Sottile V., Rudd C. D., Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods, Mater. Sci. & Eng. C, 2013, 33, 1914–1924.10.1016/j.msec.2012.12.089Search in Google Scholar PubMed

[107] Sene F. F., Martinelli J. R., Gomes L., Synthesis and characterization of niobium phosphate glasses containing barium and potassium, J. Non-Crys. Sol., 2004, 348, 30–37.10.1016/j.jnoncrysol.2004.08.122Search in Google Scholar

[108] Foroutan F., De Leeuw N. H., Martin R. A., Palmer G., Owens G. J., Kim H. W., et al., Novel sol–gel preparation of (P 2 O 5) 0.4–(CaO) 0.25–(Na 2 O) X–(TiO 2)(0.35- X) bioresorbable glasses (X= 0.05, 0.1, and 0.15), J. Sol-Gel Sci. & Tech., 2015, 73, 434–442.10.1007/s10971-014-3555-6Search in Google Scholar

[109] Ciceo-Lucacel R., Radu T., Ponta O., Simon V., Novel selenium containing boro-phosphate glasses: Preparation and structural study, Mater. Sci. & Eng. C, 2014, 39, 61–66.10.1016/j.msec.2014.02.025Search in Google Scholar PubMed

[110] Lu M., Wang F., Liao Q., Chen K., Qin J., Pan S., FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses, J. Mol. Struc., 2015, 1081, 187–192.10.1016/j.molstruc.2014.10.029Search in Google Scholar

Received: 2020-05-22
Revised: 2020-09-30
Accepted: 2020-10-17
Published Online: 2020-11-18

© 2020 Abul Arafat et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 9.2.2023 from
Scroll Up Arrow