Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 31, 2020

Bibliometric profiles of top 50 most cited articles on bioactive glass

  • Mamun Khan Sujon , Siti Noor Fazliah Mohd Noor EMAIL logo , Muhammad Azrul Bin Zabidi , Khairul Anuar Shariff and Mohammad Khursheed Alam EMAIL logo
From the journal Biomedical Glasses

Abstract

Citation analysis of a certain publication acknowledges its impact on the scientific community. This study conducted a multivariate analysis of the top 50 most cited articles published on the field of Bioactive Glass. A systemic search was performed using the “All database” section of the Web of Science to retrieve the top 50 most cited original publications. The selected articles were then manually cross-matched with Elsevier Scopus and Google Scholar Database. Parameters such as article title, authorship, institution, country of publication, year, citation count, citation density, current citation index, and journal name were retrieved from Web of Science. Different ranges of citation numbers were retrieved for these publications in which 197-913 are from Web of Science, 209-962 are from Elsevier Scopus, and 269-1225 are from Google Scholar. A total of 153 authors contributed to this marked list, where Professor L.L. Hench contributed the highest number of articles (n=21). Imperial College London published the highest number of articles (n=21). In summary, this study provides a good scientometric picture of bioactive glass related publications, which illustrate the trend of biomaterials development over the years and suggests future scopes to the scientific community.

References

[1] Hench L.L., The story of Bioglass®, J.Mater. Sci. Mater. Med., 2006, 17, 967-97810.1007/s10856-006-0432-zSearch in Google Scholar

[2] Hench L.L., Splinter R.J., Allen W., Greenlee T., Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res., 1971, 5, 117-14110.1002/jbm.820050611Search in Google Scholar

[3] Praemer A., Musculoskeletal conditions in the United States, Am. Acad. Orthop. Surg., 1976, 22, 1-199Search in Google Scholar

[4] Buck B., Malinin T.I., Brown M.D., Bone transplantation and human immunodeficiency virus: an estimate of risk of acquired immunodeficiency syndrome (AIDS), Clin. Orthop. Relat., 1989, 240, 129-13610.1097/00003086-198903000-00015Search in Google Scholar

[5] Binderman I., Fin N., CRC Handbook of Bioactive Ceramics, 1st ed., CRC Press, Informa UK Limited, 1990, 45-51Search in Google Scholar

[6] Hench L.L., New materials and technologies for healthcare, Imperial College Press, Imperial College London, 2011Search in Google Scholar

[7] Jones J.R., Review of bioactive glass: from Hench to hybrids, Acta Biomater., 2013, 9, 4457-448610.1016/j.actbio.2012.08.023Search in Google Scholar

[8] OECD Frascati Manual, 6th ed., OECD iLibrary, Organisation for Economic Co-operation and Development, 2013, 203Search in Google Scholar

[9] Aria M., Cuccurullo C., bibliometrix: An R-tool for comprehensive science mapping analysis, J. Informet., 2017, 11, 959-97510.1016/j.joi.2017.08.007Search in Google Scholar

[10] Van Eck N.J., Waltman L., Bibliometric mapping of the computational intelligence field, Int. J. Uncertain. Fuzz., 2007, 15, 625-64510.1142/S0218488507004911Search in Google Scholar

[11] Arshad A.I., Ahmad P., Dummer P.M., Alam M.K., Asif J.A., Mah-mood Z., et al., Citation classics on dental caries: a systematic review, Eur. J. Dent., 2020, 14, 12810.1055/s-0040-1703419Search in Google Scholar

[12] Xynos I.D., Edgar A.J., Buttery L.D., Hench L.L., Polak J.M., Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, J. Biomed. Mater. Res, 2001, 55, 151-15710.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-DSearch in Google Scholar

[13] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglass®- derived glass–ceramic scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 2414-242510.1016/j.biomaterials.2005.11.025Search in Google Scholar

[14] Xynos I.D., Edgar A.J., Buttery L.D., Hench L.L., Polak J.M., Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem. Biophys. Res. Commun., 2000, 276, 461-46510.1006/bbrc.2000.3503Search in Google Scholar

[15] Kokubo T., Surface chemistry of bioactive glass-ceramics, J. Non. Cryst. Solids, 1990, 120, 138-15110.1016/0022-3093(90)90199-VSearch in Google Scholar

[16] Xynos I., Hukkanen M., Batten J., Buttery L., Hench L., Polak J., Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering, Calcif. Tissue Int., 2000, 67, 321-32910.1007/s002230001134Search in Google Scholar

[17] Yan X., Yu C., Zhou X., Tang J., Zhao D., Highly ordered meso-porous bioactive glasses with superior in vitro bone-forming bioactivities, Angew. Chem. Int. Ed., 2004, 43, 5980-598410.1002/anie.200460598Search in Google Scholar

[18] Jones J.R., Ehrenfried L.M., Hench L.L., Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 964-97310.1016/j.biomaterials.2005.07.017Search in Google Scholar

[19] Li R., Clark A., Hench L., An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater., 1991, 2, 231-23910.1002/jab.770020403Search in Google Scholar

[20] Peitl O., Zanotto E.D., Hench L.L., Highly bioactive P2O5–Na2O– CaO–SiO2 glass-ceramics, J. Non. Cryst. Solids, 2001, 292, 115-12610.1016/S0022-3093(01)00822-5Search in Google Scholar

[21] Valerio P., Pereira M.M., Goes A.M., Leite M.F., The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials, 2004, 25, 2941-294810.1016/j.biomaterials.2003.09.086Search in Google Scholar PubMed

[22] Wu C., Zhou Y., Xu M., Han P., Chen L., Chang J., et al., Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 2013, 34, 422-43310.1016/j.biomaterials.2012.09.066Search in Google Scholar PubMed

[23] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N., O’Donnell M.D., Hill R.G., et al., The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, 2010, 31, 3949-395610.1016/j.biomaterials.2010.01.121Search in Google Scholar PubMed

[24] Sepulveda P., Jones J.R., Hench L.L., Bioactive sol-gel foams for tissue repair, J. Biomed. Mater. Res., 2002, 59, 340-34810.1002/jbm.1250Search in Google Scholar PubMed

[25] Aguiar H., Serra J., González P., León B., Structural study of sol– gel silicate glasses by IR and Raman spectroscopies, J. Non. Cryst. Solids, 2009, 355, 475-48010.1016/j.jnoncrysol.2009.01.010Search in Google Scholar

[26] Xia W., Chang J., Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system, J. Control. Release, 2006, 110, 522-53010.1016/j.jconrel.2005.11.002Search in Google Scholar

[27] Gough J.E., Jones J.R., Hench L.L., Nodule formation and miner-alisation of human primary osteoblasts cultured on a porous bioactive glass scaffold, Biomaterials, 2004, 25, 2039-204610.1016/j.biomaterials.2003.07.001Search in Google Scholar

[28] Filho O.P., La Torre G.P., Hench L.L., Effect of crystallization on apatite-layer formation of bioactive glass 45S5, J. Biomed. Mater. Res., 1996, 30, 509-51410.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-TSearch in Google Scholar

[29] Pereira M.d.M., Clark A., Hench L., Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro, J. Biomed. Mater. Res., 1994, 28, 693-69810.1002/jbm.820280606Search in Google Scholar

[30] Wilson J., Pigott G., Schoen F., Hench L., Toxicology and biocompatibility of bioglasses, J. Biomed. Mater. Res., 1981, 15, 805-81710.1002/jbm.820150605Search in Google Scholar

[31] Sepulveda P., Jones J., Hench L., In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, J. Biomed. Mater. Res., 2002, 61, 301-31110.1002/jbm.10207Search in Google Scholar

[32] Leach J.K., Kaigler D., Wang Z., Krebsbach P.H., Mooney D.J., Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration, Biomaterials, 2006, 27, 3249-325510.1016/j.biomaterials.2006.01.033Search in Google Scholar

[33] Bellantone M., Williams H.D., Hench L.L., Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass, Antimicrob. Agents Chemother., 2002, 46, 1940-194510.1128/AAC.46.6.1940-1945.2002Search in Google Scholar

[34] Roether J., Boccaccini A.R., Hench L., Maquet V., Gautier S., Jérôme R., Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications, Biomaterials, 2002, 23, 3871-387810.1016/S0142-9612(02)00131-XSearch in Google Scholar

[35] Lu H.H., El-Amin S.F., Scott K.D., Laurencin C.T., Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro, J. Biomed. Mater. Res., 2003, 64, 465-47410.1002/jbm.a.10399Search in Google Scholar

[36] Yan X., Huang X., Yu C., Deng H., Wang Y., Zhang Z., et al., The invitro bioactivity of mesoporous bioactive glasses, Biomaterials, 2006, 27, 3396-340310.1016/j.biomaterials.2006.01.043Search in Google Scholar

[37] Huang W., Day D.E., Kittiratanapiboon K., Rahaman M.N., Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mater. Sci. Mater. Med., 2006, 17, 583-59610.1007/s10856-006-9220-zSearch in Google Scholar

[38] López-Noriega A., Arcos D., Izquierdo-Barba I., Sakamoto Y., Terasaki O., Vallet-Regí M., Ordered mesoporous bioactive glasses for bone tissue regeneration, Chem. Mater., 2006, 18, 3137-314410.1021/cm060488oSearch in Google Scholar

[39] Maquet V., Boccaccini A.R., Pravata L., Notingher I., Jérôme R., Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation, Biomaterials, 2004, 25, 4185-419410.1016/j.biomaterials.2003.10.082Search in Google Scholar

[40] Wu C., Zhou Y., Fan W., Han P., Chang J., Yuen J., et al., Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering, Biomaterials, 2012, 33, 2076-208510.1016/j.biomaterials.2011.11.042Search in Google Scholar

[41] Silver I.A., Deas J., Erecińska M., Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials, 2001, 22, 175-18510.1016/S0142-9612(00)00173-3Search in Google Scholar

[42] Day R.M., Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro, Tissue Eng., 2005, 11, 768-77710.1089/ten.2005.11.768Search in Google Scholar

[43] Stoor P., Söderling E., Salonen J.I., Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand., 1998, 56, 161-16510.1080/000163598422901Search in Google Scholar

[44] Zhong J., Greenspan D.C., Processing and properties of sol–gel bioactive glasses, J. Biomed. Mater. Res., 2000, 53, 694-70110.1002/1097-4636(2000)53:6<694::AID-JBM12>3.0.CO;2-6Search in Google Scholar

[45] Sepulveda P., Jones J.R., Hench L.L., Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses, J. Biomed. Mater. Res., 2001, 58, 734-74010.1002/jbm.10026Search in Google Scholar

[46] Misra S.K., Mohn D., Brunner T.J., Stark W.J., Philip S.E., Roy I., et al., Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites, Biomaterials, 2008, 29, 1750-176110.1016/j.biomaterials.2007.12.040Search in Google Scholar

[47] Peter M., Binulal N., Nair S., Selvamurugan N., Tamura H., Jayakumar R., Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering, Chem. Eng. J., 2010, 158, 353-36110.1016/j.cej.2010.02.003Search in Google Scholar

[48] Oonishi H., Hench L., Wilson J., Sugihara F., Tsuji E., Matsuura M., et al., Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite, J. Biomed. Mater. Res., 2000, 51, 37-4610.1002/(SICI)1097-4636(200007)51:1<37::AID-JBM6>3.0.CO;2-TSearch in Google Scholar

[49] Allan I., Newman H., Wilson M., Antibacterial activity of particulate Bioglass® against supra-and subgingival bacteria, Biomaterials, 2001, 22, 1683-168710.1016/S0142-9612(00)00330-6Search in Google Scholar

[50] Wu C., Luo Y., Cuniberti G., Xiao Y., Gelinsky M., Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability, Acta Biomater., 2011, 7, 2644-265010.1016/j.actbio.2011.03.009Search in Google Scholar

[51] Filgueiras M.R., La Torre G., Hench L.L., Solution effects on the surface reactions of a bioactive glass, J. Biomed. Mater. Res., 1993, 27, 445-45310.1002/jbm.820270405Search in Google Scholar

[52] Blaker J., Nazhat S., Boccaccini A., Development and character-isation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications, Biomaterials, 2004, 25, 1319-132910.1016/j.biomaterials.2003.08.007Search in Google Scholar

[53] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Thollet G., Bernache-Assolant D., et al., Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater., 2007, 55, 3305-331310.1016/j.actamat.2007.01.029Search in Google Scholar

[54] Boccaccini A.R., Maquet V., Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications, Compos. Sci. Technol., 2003, 63, 2417-242910.1016/S0266-3538(03)00275-6Search in Google Scholar

[55] Verrier S., Blaker J.J., Maquet V., Hench L.L., Boccaccini A.R., PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment, Biomaterials, 2004, 25, 3013-302110.1016/j.biomaterials.2003.09.081Search in Google Scholar PubMed

[56] Schepers E., Clercq M.D., Ducheyne P., Kempeneers R., Bioactive glass particulate material as a filler for bone lesions, J. Oral Rehabil., 1991, 18, 439-45210.1111/j.1365-2842.1991.tb01689.xSearch in Google Scholar PubMed

[57] Jones J.R., Tsigkou O., Coates E.E., Stevens M.M., Polak J.M., Hench L.L., Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells, Biomaterials, 2007, 28, 1653-166310.1016/j.biomaterials.2006.11.022Search in Google Scholar PubMed

[58] Day R.M., Boccaccini A.R., Shurey S., Roether J.A., Forbes A., Hench L.L., et al., Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials, 2004, 25, 5857-586610.1016/j.biomaterials.2004.01.043Search in Google Scholar PubMed

[59] Serra J., González P., Liste S., Serra C., Chiussi S., León B., et al., FTIR and XPS studies of bioactive silica based glasses, J. Non Cryst. Solids, 2003, 332, 20-2710.1016/j.jnoncrysol.2003.09.013Search in Google Scholar

[60] Ogino M., Ohuchi F., Hench L.L., Compositional dependence of the formation of calcium phosphate films on bioglass, J. Biomed. Mater. Res., 1980, 14, 55-6410.1002/jbm.820140107Search in Google Scholar PubMed

[61] Vollenweider M., Brunner T.J., Knecht S., Grass R.N., Zehnder M., Imfeld T., et al., Remineralization of human dentin using ultrafine bioactive glass particles, Acta Biomater, 2007, 3, 936-94310.1016/j.actbio.2007.04.003Search in Google Scholar PubMed

[62] Hench L.L., Bioceramics: from concept to clinic, J. Am. Ceram. Society, 1991, 74, 1487-151010.1111/j.1151-2916.1991.tb07132.xSearch in Google Scholar

[63] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 2011, 32, 2757-277410.1016/j.biomaterials.2011.01.004Search in Google Scholar PubMed

[64] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., et al., Bioactive glass in tissue engineering, Acta Biomater., 2011, 7, 2355-237310.1016/j.actbio.2011.03.016Search in Google Scholar PubMed PubMed Central

[65] Kokubo T., Bioactive glass ceramics: properties and applications, Biomaterials, 1991, 12, 155-16310.1016/0142-9612(91)90194-FSearch in Google Scholar

[66] Hench L.L., Wilson J., Surface-active biomaterials, Science, 1984, 226, 630-63610.1126/science.6093253Search in Google Scholar

[67] Cao W., Hench L.L., Bioactive materials, Ceram. Int., 1996, 22, 493-50710.1016/0272-8842(95)00126-3Search in Google Scholar

[68] Gerhardt L.C., Boccaccini A.R., Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials, 2010, 3, 3867-391010.3390/ma3073867Search in Google Scholar PubMed PubMed Central

[69] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. Part B Rev., 2010, 16, 199-20710.1089/ten.teb.2009.0416Search in Google Scholar

[70] Tarazona B., Lucas-Dominguez R., Paredes-Gallardo V., Alonso-Arroyo A., Vidal-Infer A., The 100 most cited articles in orthodontics: A bibliometric study, Angle Orth., 2018, 88, 785-79610.2319/012418-65.1Search in Google Scholar PubMed PubMed Central

[71] Fardi A., Kodonas K., Lillis T., Veis A., Top-Cited Articles in Implant Dentistry, Int. J. Oral Maxillofac. Implants, 2017, 32,10.11607/jomi.5331Search in Google Scholar PubMed

[72] Jafarzadeh H., Sarraf Shirazi A., Andersson L., The most-cited articles in dental, oral, and maxillofacial traumatology during 64 years, Dent. Traumatol., 2015, 31, 350-36010.1111/edt.12195Search in Google Scholar PubMed

[73] Ahmad P., Dummer P., Noorani T., Asif J., The top 50 most-cited articles published in the International Endodontic Journal, Int. Endo. J., 2019, 52, 803-81810.1111/iej.13083Search in Google Scholar PubMed

[74] Feijoo J.F., Limeres J., Fernández-Varela M., Ramos I., Diz P., The 100 most cited articles in dentistry, Clin. Oral Investig„ 2014, 18, 699-70610.1007/s00784-013-1017-0Search in Google Scholar PubMed

[75] Mohd Noor S.N.F., In vitro investigations of bioactive glass scaffolds for dental tissue engineering, PhD thesis, Imperial College of London, UK, 2014Search in Google Scholar

[76] Hench L.L., Polak J.M., Third-generation biomedical materials, Science, 2002, 295, 1014-101710.1126/science.1067404Search in Google Scholar

[77] Hench L.L., Biomaterials: a forecast for the future, Biomaterials, 1998, 19, 1419-142310.1016/S0142-9612(98)00133-1Search in Google Scholar

[78] Azevedo M.M., Tsigkou O., Nair R., Jones J.R., Jell G., Stevens M.M., Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior, Tissue Eng Part A, 2015, 21, 382-38910.1089/ten.tea.2014.0083Search in Google Scholar PubMed PubMed Central

[79] Quinlan E., Partap S., Azevedo M.M., Jell G., Stevens M.M., O’Brien F.J., Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair, Biomaterials, 2015, 52, 358-36610.1016/j.biomaterials.2015.02.006Search in Google Scholar PubMed

[80] Kargozar S., Lotfibakhshaiesh N., Ai J., Mozafari M., Brouki Milan P., Hamzehlou S., et al., Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities, Acta Biomater., 2017, 58, 502-51410.1016/j.actbio.2017.06.021Search in Google Scholar PubMed

[81] Hoppe A., Brandl A., Bleiziffer O., Arkudas A., Horch R.E., Jokic B., et al., In vitro cell response to Co-containing 1,393 bioactive glass, Mater. Sci. Eng. C. Mater. Biol. Appl., 2015, 1, 157-16310.1016/j.msec.2015.07.014Search in Google Scholar PubMed

[82] Moura D., Souza M.T., Liverani L., Rella G., Luz G.M., Mano J.F., et al., Development of a bioactive glass-polymer composite for wound healing applications, Mater. Sci. Eng. Mater. Biol. Appl. C, 2017, 76, 224-23210.1016/j.msec.2017.03.037Search in Google Scholar PubMed

[83] Luginina M., Schuhladen K., Orrú R., Cao G., Boccaccini A.R., Liverani L., Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications, Nanomaterials (Basel), 2020, 19, 97810.3390/nano10050978Search in Google Scholar PubMed PubMed Central

[84] Schuhladen K., Mukoo P., Liverani L., Neščáková Z., Boccaccini A.R., Manuka honey and bioactive glass impart methylcellu-lose foams antibacterial effects for wound healing applications, Biomed. Mater., 2020, 8, doi:10.1088/1748-605X/ab87e5.10.1088/1748-605X/ab87e5Search in Google Scholar PubMed

Received: 2020-09-24
Revised: 2020-12-16
Accepted: 2020-12-26
Published Online: 2020-12-31

© 2020 Mamun Khan Sujon et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 9.2.2023 from https://www.degruyter.com/document/doi/10.1515/bglass-2020-0007/html
Scroll Up Arrow