Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 11, 2016

Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms

  • J.M. Romero-García , C. Martínez-Patiño , E. Ruiz , I. Romero and E. Castro
From the journal Bioethanol

Abstract

Olive stones are the main solid byproducts obtained from olive oil production and from table olives production. As a lignocellulosic material, the use of olive stones for ethanol and other chemicals production has been proposed, particularly under the biorefinery concept. As part of such a process, this work deals with the fractionation of the lignocellulosic material by dilute acid autoclave pretreatment at 2% sulfuric acid, 130°C, 60 min and 1:1 liquid to solid ratio. Moreover, the work addresses the fermentation of the liquors obtained after pretreatment. The released sugars are composed mainly by xylose and other hemicellulosic sugars. The fermentation performance of three xylose-fermenting microorganisms, e.g. two Escherichia coli species and Scheffersomyces stipitis, are compared. The study analyzes in a first step the microorganism behavior on synthetic liquors, with a similar composition to that of the real liquors. Finally, and taken into account the results from the previous steps, the real liquor obtained from olive stones pretreatment is fermented. Results show that E. coli MM160 is the best ethanol producer out of the three microorganisms studied. Globally, the pretreatment produced a liquor containing 140 g hemicellulosic sugars/l and requiring firstly dilution by 50% and a detoxification step by overliming. The fermentation of this liquor by E. coli MM160 results in a 25 g ethanol/l solution equivalent to 50 g ethanol/kg olive stone, in spite of 20 g acetic acid/l also present. These results confirm both olive stones and E. coli MM160 as promising feedstock and microorganism for ethanol production.

References

[1] FAOSTAT, 2014. http://faostat.fao.org Search in Google Scholar

[2] Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ. Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 2014;159: 421-32. 10.1016/j.biortech.2014.03.062Search in Google Scholar PubMed

[3] Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J. Olive stones an attractive source of bioactive and valuable compounds. Bioresour Technol 2008;99: 5261–9. 10.1016/j.biortech.2007.11.027Search in Google Scholar PubMed

[4] Mata-Sánchez J, Pérez-Jiménez JA, Díaz-Villanueva MJ, Serrano A, Núñez-Sánchez N, López-Giménez FJ. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel 2013;113: 750–6. 10.1016/j.fuel.2013.06.019Search in Google Scholar

[5] Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 2008;30: 1515–24. 10.1007/s10529-008-9728-zSearch in Google Scholar PubMed

[6] Díaz MJ; Ruiz E, Romero I, Cara C, Moya M, Castro E. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol Biotechnol 2009;25 (5): 891-9. 10.1007/s11274-009-9966-9Search in Google Scholar

[7] Díaz-Villanueva MJ, Cara-Corpas C, Ruiz-Ramos E, Romero- Pulido I, Castro-Galiano E. Olive tree pruning as an agricultural residue for ethanol production. Fermentation of hydrolysates from dilute acid pretreatment. Spanish J Agric Res 2012;10(3): 643-8. 10.5424/sjar/2012103-2631Search in Google Scholar

[8] Jönsson LF, Alriksson B, Nilvebrant NO.Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 2013;6: 16. 10.1186/1754-6834-6-16Search in Google Scholar PubMed PubMed Central

[9] Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta- Beristain G, Gosset G, Martínez A. Engineering the Escherichia coli Fermentative Metabolis. Adv Biochem Eng/Biotechnol 2010;121: 71–107. Search in Google Scholar

[10] Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 2011;102: 2702-11. 10.1016/j.biortech.2010.10.143Search in Google Scholar PubMed

[11] Castro E, Nieves IU, Mullinnix MT, Sagues WJ, HoffmanRW, Fernández-Sandoval MT, Tian Z, Rockwood DL, Tamang B, Ingram LO. Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl Energy 2014;125: 76-83. 10.1016/j.apenergy.2014.03.047Search in Google Scholar

[12] Jin M, Balan V, Gunawan C, Dale BE. Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11. Bioresour Technol 2012;111: 294–300. 10.1016/j.biortech.2012.01.154Search in Google Scholar PubMed

[13] El Asli A, Qatibi AI. Ethanol production from olive cake biomass substrate. Biotechnol Bioproc Eng 2009;14: 118-22. 10.1007/s12257-008-0071-ySearch in Google Scholar

[14] Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 2000;69: 526–36. 10.1002/1097-0290(20000905)69:5<526::AID-BIT7>3.0.CO;2-ESearch in Google Scholar

[15] Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO. Low salt medium for lactate and ethanol production by recombinant Escherichia coli. B Biotechnol Lett 2007;29: 397–404. 10.1007/s10529-006-9252-ySearch in Google Scholar

[16] National Renewable Energy Laboratory. Chemical analysis and testing laboratory analytical procedures. URL (http://www.eere. energy.gov/biomass/analytical_ procedures.html). Accessed 12-05-2013. Search in Google Scholar

[17] Saha BC, Nichols NN, Qureshi N, Cotta MA. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol 2011;92(4):865-74. 10.1007/s00253-011-3600-0Search in Google Scholar

[18] Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martínez B, Bustos P, González V, Bolivar F, Gosset G, Martínez A. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 2012;96: 1291-300. 10.1007/s00253-012-4177-ySearch in Google Scholar

[19] Qureshi N, Dien BS, Nichols NN, Saha BC, Cotta MA. Genetically engineered Escherichia coli for ethanol production from xylose: substrate and product inhibition and kinetic parameters. Food Bioprod Proc 2006;84(2): 114-22. 10.1205/fbp.05038Search in Google Scholar

[20] Qureshi N, Dien BS, Liu S, Saha BC, Cotta MA, Hughes S,Hector R.. Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery. Biotechnol Prog 2012;28(5): 1179-85. 10.1002/btpr.1584Search in Google Scholar

[21] Nieves IU, Geddes CC, Miller EN, Mullinnix MT, Hoffman RW, Fu Z, Tong Z, Ingram LO. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour Technol 2011;102: 5145–52. 10.1016/j.biortech.2011.02.008Search in Google Scholar

[22] Li X, Yi J-p, Ren Y-l, Yin W-p. Modeling alcoholic fermentation of glucose/xylose mixtures by ethanologenic Escherichia coli as a function of pH. Ann Microbiol 2014;64: 459-73. 10.1007/s13213-013-0676-zSearch in Google Scholar

[23] Larsson S, Quintana-Sáinz A, Reimann A, Nilvebrant NO, Jönsson LJ. Influence of lignocellulose-derived aromatic compounds on oxygenlimited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 2000;84: 617–32. 10.1385/ABAB:84-86:1-9:617Search in Google Scholar

[24] Lee S, Nam D, Jung JY, Oh MK, Sang BI, Mitchell RJ. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour Technol 2012;114: 450–6. 10.1016/j.biortech.2012.02.085Search in Google Scholar

[25] Cuevas M, Sánchez S, Bravo V, Cruz N, García JF. Fermentation of enzymatic hydrolysates from olive stones by Pachylosen tannophilus. J Chem Technol Biotechnol 2009;84: 461–7. 10.1002/jctb.2064Search in Google Scholar

[26] Romero I, Sánchez S, Moya M, Castro E, Ruiz E, Bravo V. Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochem Eng J 2007;36: 108-15. 10.1016/j.bej.2007.02.006Search in Google Scholar

[27] Takahashi CM, de Carvalho Lima KG, Takahashi DF, Alterthum F. Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 2000;16: 829–34. 10.1023/A:1008987103701Search in Google Scholar

[28] Kim TH, Lee YY, Sunwoo C, Kim JS. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 2006;133: 41–57. 10.1385/ABAB:133:1:41Search in Google Scholar

[29] Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 2011;102: 6959–65. 10.1016/j.biortech.2011.04.036Search in Google Scholar

[30] Avci A, Saha BC, Kennedy GJ, Cotta MA. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 2013;142: 312–19. 10.1016/j.biortech.2013.05.002Search in Google Scholar

[31] Girisuta B, Janssen LPBM, Heeres HJ. Kinetic study on the acid-catalyzed. Hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 2007;46(6): 1696-708. 10.1021/ie061186zSearch in Google Scholar

[32] Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G. A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chinese J Chem Eng 2011;19(2): 185-91. 10.1016/S1004-9541(11)60152-3Search in Google Scholar

Received: 2015-9-16
Accepted: 2015-9-21
Published Online: 2016-2-11

© 2016 J.M. Romero-García et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.1515/bioeth-2016-0002/html
Scroll to top button