Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 29, 2016

Cellulases by Penicillium sp. in different culture conditions

  • Leyanis Mesa , Carmen A. Salvador , Mónica Herrera , Daimí I. Carrazana and Erenio González
From the journal Bioethanol

Abstract

The high cost of cellulolytic enzymes used in the ethanol production process has led to a growing interest in situ production. The evaluation of the influence of several factors in the fungus Penicillium sp. cellulase production using pretreated sugarcane bagasse is very interesting. Penicillium sp. cellulase production by using filter paper as cellulosic substrate and the use of glucose, sucrose and lactose like co-substrates was assessed. In the experiments using filter paper as a cellulosic substrate, the highest FPase enzyme activity obtained was 280 FPU.L-1 using sucrose as co-substrate. Subsequently, the study of pretreated sugarcane bagasse was conducted using Plackett-Burman experimental design with analysis of 6 factors influencing the process. The highest FPase activity was 615.1 FPU.L-1. The factors influencing FPase and β- glucosidase activity were the use of molasses and the solid loading. The successful use of molasses as co-substrate opens perspectives for future researches.

References

[1] Gusakov A.V., Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnol., 2011, 29, 419-425 10.1016/j.tibtech.2011.04.004Search in Google Scholar

[2] Balat M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ. Convers. Manage., 2011, 52, 858–875 10.1016/j.enconman.2010.08.013Search in Google Scholar

[3] Bhat M.K., Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 2000, 18, 355–383 10.1016/S0734-9750(00)00041-0Search in Google Scholar

[4] Marjamaa K., Toth K., Bromann P.A., Szakacs G., Kruus K., Novel Penicillium cellulases for total hydrolysis of lignocellulosics, Enzyme Microb. Tech., 2013, 52, 358– 369 10.1016/j.enzmictec.2013.03.003Search in Google Scholar PubMed

[5] Krogh K.B., Morkeberg A., Friscad J.C., Olsson L., Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol., 2004, 113, 389–401 10.1007/978-1-59259-837-3_34Search in Google Scholar

[6] Jørgensen H., Mørkeberg A., Krogh K.B., Olsson L., Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol., 2005, 36,42–48 10.1016/j.enzmictec.2004.03.023Search in Google Scholar

[7] Sun Y., Liu Z.Y., Zheng K., Song X., Qu Y.B., The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol., 2008, 42, 560-567 10.1016/j.enzmictec.2008.01.020Search in Google Scholar

[8] Rao M., Gaikwad S., Mishra C., Deshpande V., Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl. Biochem. Biotechnol., 1988, 19, 129–137 10.1007/BF02921478Search in Google Scholar PubMed

[9] Qu Y.B., Gao P.J., Wang Z.N., Studies on the cellulase system of Penicilum decumbens. Physiological characters of the mutant JU1 and regulation of its enzymes synthesis. J. Shandong Univ., 1987, 22, 97–103 Search in Google Scholar

[10] Ferrer Y., León M., Michelena G., Dustet J.C., Duque A., Ibañez M.L., Tortoló K., Selección de hongos aislados de bagazo de caña con actividad celulasa sobre celulosa cristalina para posibles aplicaciones industriales. ICIDCA, 2011, 45: 3-11 Search in Google Scholar

[11] Mandels M., Weber J., The production of cellulases. In Cellulases and their Applications. Advances in Chemistry Series, vol. 95 (ed. R. F. Gould), Washington, DC: American Chemical Society. pp. 391-414, 1969 10.1021/ba-1969-0095.ch023Search in Google Scholar

[12] Nascimento RP., Junior NA., Pereira Jr N., Bon EPS., Coelho RRR., Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Letters in Applied Microbiology, 2009, 48: 529–535 10.1111/j.1472-765X.2009.02575.xSearch in Google Scholar PubMed

[13] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., and Crocker D., Determination of structural carbohydrates and lignin in biomass. NREL, 2008 Search in Google Scholar

[14] Ghose T.K., Measurementof cellulase activities. Pure & Appl. Chem., 1987, 59, 257-268 10.1351/pac198759020257Search in Google Scholar

[15] Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31, 426-428 10.1021/ac60147a030Search in Google Scholar

[16] Mandels M., Stemberg D., Andreoti R.E., Growth and cellulase production by Trichoderma. In Proceedings of Symposium on Enzymatic Hydrolysis of Ce/lrdose, eds Bailey, M., Enari, T.M. & Linko, M. pp. 81-109. Helsinki: SITRA, 1975 Search in Google Scholar

[17] Saddler, J.N., Screening of highly cellulolytic fungi and the action of their cellulase enzyme system. Enz. Microb. Tech., 1982, 4, 414-418 10.1016/0141-0229(82)90073-4Search in Google Scholar

[18] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with folin phenol reagent. J. Biol. Chem., 1951,193, 265-275 10.1016/S0021-9258(19)52451-6Search in Google Scholar

[19] Mesa L., Gonzalez E., Cara C., Ruiz E., Castro E., Mussatto S., An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J. Chem. Technol. Biotechnol., 2010, 85, 1092-1098 10.1002/jctb.2404Search in Google Scholar

[20] Ghanem N.B., Youssef H., and Mahrouse H.K., Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Biores. Technol., 2000, 73, 113-121 10.1016/S0960-8524(99)00155-8Search in Google Scholar

[21] Forchiassin F., Papinutti V.L., Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. J. Food Eng., 2007, 81, 54-59 10.1016/j.jfoodeng.2006.10.006Search in Google Scholar

[22] Mesa L., Morales M., González E., Cara C., Romero I., Castro E., Mussatto S.I., Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production. Chem. Eng. Process., 2014, 85, 196-202 10.1016/j.cep.2014.07.012Search in Google Scholar

[23] Mesa L., González E., Cara C., González M., Castro E., Mussatto S.I., The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem. Eng. J., 2011, 168, 1157-1162 10.1016/j.cej.2011.02.003Search in Google Scholar

[24] Steiner J., Socha C., Eyzaguirre J., Culture conditions for enhanced cellulose production by a native strain of Penicillium purpurogenum. World J. Microbiol. Biotechnol., 1994, 10, 280-284 10.1007/BF00414863Search in Google Scholar PubMed

[25] Ahamed A., Vermette P., Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J., 2008, 40, 399–407 10.1016/j.bej.2007.11.030Search in Google Scholar

[26] Kovacs K., Production of cellulolytic enzymes with Trichoderma atroviride mutants for the biomass-to-bioethanol process. PhD Thesis. Lund University, Sweden, 2009 Search in Google Scholar

[27] Jørgensen H., Olsson L., Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme Microb Technol., 2006, 38, 381–390 10.1016/j.enzmictec.2005.06.018Search in Google Scholar

[28] Suto M., Tomita F., Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng., 2001, 92,305-311 10.1016/S1389-1723(01)80231-0Search in Google Scholar

[29] Goldbeck R., Ramos M.M., Pereira G.A.G., Maugeri-Filho F., Cellulase production from a new strain Acremonium strictum isolated from the Braziliam Biome using diferente susbstrates. Biores. Technol., 2013, 128, 797-803 10.1016/j.biortech.2012.10.034Search in Google Scholar

[30] Ling M., Chen G.G., Lin Y.S., Liang Z.Q., Induction of cellulase gene transcription by a novel oligosaccharide: molasses alcohol stillage substance. World J. Microbiol. Biotechnol., 2009, 25,1485–1489 10.1007/s11274-009-0017-3Search in Google Scholar

[31] He J., Wu A., Chen D., Yu B., Mao X., Zheng P., Yu J., Tian G., Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnol. Biof., 2014, 7,43-52 10.1186/1754-6834-7-43Search in Google Scholar

[32] Lee C.K., Darah I., Ibrahim C.O., Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnol. Res. Int., 2011, 2011, 1-7 10.4061/2011/658493Search in Google Scholar

[33] Karmakar M., Ray R.R., Extra cellular endoglucananse production by Rhizopus oryzae in solid and liquid state fermentation of agro wastes. Res. J. Microbiol., 2011, 6, 41–53 Search in Google Scholar

[34] Rowell M.R., Pettersen R., Han J.S., Rowell J.S., Tshabalala M.A., Handbook of wood chemistry and wood composites. Cell Wall Chemistry. CRC Press, Chapter 3, p. 487, 2005 10.1201/9780203492437Search in Google Scholar

[35] Narasimha G., Sridevi A., Buddolla V., Subhosh M., Rajasekhar R.B., Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol., 2006, 5, 472-476 Search in Google Scholar

[36] Szijarto N., Szengyel Z., Liden G., Reczey K., Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl. Biochem. Biotechnol., 2004, 115, 113-116 10.1385/ABAB:113:1-3:115Search in Google Scholar

[37] Maeda N.R., Serpa V.I., Rocha V.A.L., Mesquita R.A.A., Santanna L.M.M., Castro A.M., Driemeier C.E., Pereira N.J., Polikarpor I., Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicilium funiculosum and Trichoderma harzianum cellulases. Process Biochem., 2011, 46, 1196-1201 10.1016/j.procbio.2011.01.022Search in Google Scholar

[38] Jørgensen H., Mørkeberg A., Krogh K.B.R., Olsson L., Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis. Enzyme Microb. Technol., 2005, 36, 42–48 10.1016/j.enzmictec.2004.03.023Search in Google Scholar

Received: 2014-2-4
Accepted: 2015-8-3
Published Online: 2016-1-29

© 2016 Leyanis Mesa et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/bioeth-2016-0005/html
Scroll to top button