Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 19, 2016

Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides

  • Viviane Marcos Nascimento , Anny Manrich , Paulo Waldir Tardioli , Roberto de Campos Giordano , George Jackson de Moraes Rocha and Raquel de Lima Camargo Giordano
From the journal Bioethanol


The economics for production of secondgeneration (2G) ethanol from sugarcane bagasse in large scale, competing with the cogeneration of electric energy, is still not consolidated. In this scenario, the key for feasibility may be the biorefinery concept, a multiproduct industry using biomass fractions to produce energy, chemicals and by-products. Xylooligosaccharides (XOS) are oligomers of xylose often used as additives in food, animal feeds, and drugs. The effect of NaOH pretreatment on the recovery of xylan for XOS production from sugarcane bagasse under different conditions, namely 121°C, 4-7% NaOH loading, was investigated. The best condition was 4% NaOH and 60 min of reaction, achieving 55% of xylan extraction, without monomer production. In order to produce XOS, soluble and immobilized xylanases were used to hydrolyze commercial birchwood xylan (as control) and the sugarcane bagasse xylan. The immobilized endoxylanase produced XOS with 37% of xylobiose and 20% of xylotriose (w/w). The small production of xylose clearly indicated the purity of the xylan extracted from sugarcane bagasse. The biocatalyst had more than 90% of its activity preserved after 5 reaction cycles. The results showed the suitability of sugarcane bagasse as a raw material for production of ethanol and of XOS using immobilized xylanase.


[1] CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar – Safra 2014/2015, Brasília, 2015, 1, 1-29, Available from: http://www., accessed in August 13, 2015. Search in Google Scholar

[2] Pandey A., Nigan P., Soccol C.R.., Soccol V.T., Singh D., Mohan R., Advances in microbial amylases, Biotechnol. Appl. Biochem., 2000, 31, 135-152. 10.1042/BA19990073Search in Google Scholar

[3] Rocha G.J.M., Martín C., Silva V.F.N., Gómez E. O., Gonçalves, A.R., Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification, Bioresour. Technol., 2012, 111, 447-452. 10.1016/j.biortech.2012.02.005Search in Google Scholar PubMed

[4] Furlan F.F., Tonon R., Pinto F.H.P.B., Costa C.B.B., Cruz A.J.G., Giordano R.L.C., Giordano R.C., Bioelectricity versus bioethanol from sugarcane bagasse: is it worth to be flexible? Biotechnol. Biofuels, 2013, 6, 142, 1-12. 10.1186/1754-6834-6-142Search in Google Scholar PubMed PubMed Central

[5] Bragatto J., Segato F., Squina F.M., Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis, Ind. Crops Prod., 2013, 51, 123-129. 10.1016/j.indcrop.2013.08.062Search in Google Scholar

[6] Chandel A.K., Antunes F.A.F., Silva M.B., da Silva, S.S., Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis, Biotechnol. Biofuels, 2013, 6, 102, 1-11. 10.1186/1754-6834-6-102Search in Google Scholar PubMed PubMed Central

[7] Aachary A.A., Prapulla S.G., Xylooligosaccharides (XOS) as an emerging prebiotics: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications, Compr. Rev. Food. Sci. Food. Saf., 2011, 10, 2-16. 10.1111/j.1541-4337.2010.00135.xSearch in Google Scholar

[8] Gullón P., González-Muñoz M.J., Parajó, J.C., Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes, Biores. Technol., 2011, 102, 6112-6119. 10.1016/j.biortech.2011.02.059Search in Google Scholar PubMed

[9] FAO - Food and Agriculture Organization of the United Nations. FAO technical meetings on prebiotics: food quality and standards service (AGNS). Rome: Food and Agricultural Org. Available from: p 1–11, acessed in: jan, 20th 2014. Search in Google Scholar

[10] Roberfroid M., Prebiotic: The concept revisited, J. Nutr., 2007,137, 830S-837S. 10.1093/jn/137.3.830SSearch in Google Scholar PubMed

[11] Tuohy K. M., Rouzaud G.C., Brück W.M., Gibson G.R., Modulation of the human gut microflora towards improved health using prebiotics--assessment of efficacy, Curr. Pharm. Des., 2005, 11(1), 75-90. 10.2174/1381612053382331Search in Google Scholar PubMed

[12] Rycroft, C.E., Jones M.R., Gibson G.R., Rastall R.A., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 2001, 91(5),878 887. Search in Google Scholar

[13] Samanta A.K., Jayapal N., Senani S., Kotle A.P., Sridhar M., Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora, Braz. J. Microbiol., 2013, 44(1), 1-14. 10.1590/S1517-83822013005000023Search in Google Scholar PubMed PubMed Central

[14] Carrasco C., Baudel H.M., Sendelius J., Modig T., Roslander C., Galbe M., et al., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse, Enzyme Microb. Technol., 2010, 46 (2), 64-73. 10.1016/j.enzmictec.2009.10.016Search in Google Scholar

[15] Wyman, C. E., What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25 (4), 153–157. 10.1016/j.tibtech.2007.02.009Search in Google Scholar

[16] Qing, Q., Li, H.,Kumar, R., Wyman, C. E. Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment- Chapter 19: In: Wyman, C. E., Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals , Wiley Series, 2013. 10.1002/9780470975831.ch19Search in Google Scholar

[17] Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, P. S. Feedstocks for lignocellulosic biofuels. Science, 2010, 329 (5993), 790-792. Search in Google Scholar

[18] Garrote, G., Dominguez, H., Parajo, J. C.. Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J Food Eng, 2002, 52, 211–218. 10.1016/S0260-8774(01)00108-XSearch in Google Scholar

[19] Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios E, Parajo, J. C., et al., Hydrothermally treated xylan rich by-products yield different classes of xylooligosaccharides. Carbohydr Polym, 2002, 50, 47–56. 10.1016/S0144-8617(02)00045-0Search in Google Scholar

[20] Liu J., Zhou P., Liu H., Wu K., Xiao W., Gong Y., Lin J., Liu Z, Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase, Bioresour. Technol., 2014, 163, 390-394. 10.1016/j.biortech.2014.04.106Search in Google Scholar PubMed

[21] Mirahmadi K., Kabir M.M., Jeihanipour A., Karimi K., Taherzadeh M.J, Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production, Bioresources, 2010, 5(2), 928-938. Search in Google Scholar

[22] Zhu J., Zhu Y., Jiang F., Xu Y., Ouyang J., Yu S., An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell, Carbohydrate Research, 2013, 382, 52-57. 10.1016/j.carres.2013.10.007Search in Google Scholar PubMed

[23] Jayapal N., Samanta, A.K., Kolte A.P., Senani S., Sridhar, M., Suresh, K.P et al., Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production, Ind. Crops Prod., 2013, 42, 14-24. 10.1016/j.indcrop.2012.05.019Search in Google Scholar

[24] Saha B.C, Hemicellulosic Bioconversion, J. Ind. Microbiol. Biotechnol., 2003, 30, 279-291. 10.1007/s10295-003-0049-xSearch in Google Scholar PubMed

[25] Sharma M., Kumar A., Xylanases: An Overview, Br. Biotechnol. J., 2013, 3 (1), 1-28. 10.9734/BBJ/2013/1784Search in Google Scholar

[26] Polizelli, M. L., Rizzatti, A.C., Monti, R., Terenzi, H.F., Jorge, J. A., Amorim, D. S., Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67(2005), 577-591. Search in Google Scholar

[27] Manrich A., Galvão C. M., Jesus C.D., Giordano R.C., Giordano, R.L., Immobilization of trypsin on chitosan gels: use of different activation protocols and comparison with other supports, Int. J. Biol. Macromol., 2008, 43, 54-61. 10.1016/j.ijbiomac.2007.11.007Search in Google Scholar

[28] Manrich A., Komesu A., Adriano W.S., Tardioli P.W., Giordano, R.L.C., Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports, Appl. Biochem. Biotechnol., 2010, 161, 455-467. 10.1007/s12010-009-8897-0Search in Google Scholar

[29] López-Gallego F., Montes T., Fuentes M., Alonso N., Grazu V., Betancor, L., et al., Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports, J. Biotechnol ., 2005, 116, 1-10. 10.1016/j.jbiotec.2004.09.015Search in Google Scholar

[30] Mateo C., Grazu V., Palomo J. M., Lopez-Gallego F., Fernandez- Lafuente R., Guisan J.M. Immobilization of enzymes on heterofunctional epoxy supports, Nature Protocols, 2007, 2 (5), 1022-1033. 10.1038/nprot.2007.133Search in Google Scholar

[31] Gouveia E.R., Nascimento R.T., Souto-Maior A.M, Rocha G.J.M., Validação de metodologia para caracterização química de bagaço de cana-de-açúcar, Química Nova, 2009, 32, 1500-1503. 10.1590/S0100-40422009000600026Search in Google Scholar

[32] Rocha G.J.M., Silva F.T., Araújo G.T., Curvelo A.A.S., A fast and accurate method for determination of cellulose and polyoses by HPLC. In: Proceedings of the V Brazilian Symposium on the Chemistry of Lignin and Other Wood Components (1997, Curitiba, Brazil), Brazil, 1997, 5, 113-115. Search in Google Scholar

[33] Laver M.L., Wilson, K.P., Determination of carbohydrates in wood pulp products, Tappi J., 1993, 76 (6), 155-158. Search in Google Scholar

[34] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton, D., Determination of sugars, byproducts, and degradation products in liquid fraction process samples, National Renewable Energy Laboratory, 2008. Search in Google Scholar

[35] Yang B., Wyman, C.E., Characterization of the degree of polymerization of xylooligomers produced by flow through hydrolysis of pure xylan and corn stover with water, Bioresour. Technol, 2008, 99, 5756-5762. 10.1016/j.biortech.2007.10.054Search in Google Scholar

[36] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1959, 31, 426-428. 10.1021/ac60147a030Search in Google Scholar

[37] Guisán J. M., Agarose-aldehyde gels as supports for immobilization- stabilization of enzymes, Enzyme Microb. Technol., 1988, 10, 375-382. 10.1016/0141-0229(88)90018-XSearch in Google Scholar

[38] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, 1976, 72, 248-254. 10.1016/0003-2697(76)90527-3Search in Google Scholar

[39] Ghose T.K., Measurement of Cellulase Activities. Pure Appl. Chem, 1987, 59, 257-268. 10.1351/pac198759020257Search in Google Scholar

[40] Narciso G. V., Simionato K. P., Arruda P. V., Sene L., Felipe M. G. A., Palha de sorgo: Biomassa lignocelulósica potencial para utilização em bioprocessos que envolvem o aproveitamento da fração hemicelulósica, In: XVII Simpósio Nacional de Bioprocessos (05-09 Agosto 2009, Natal, Brazil), 2009. Search in Google Scholar

[41] Rocha G.J.M., Martin C., Soares I.B., Souto Maior A.M., Baudel H.M., Moraes, C.A., Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production, Biomass Bioenergy, 2011, 35, 663-670. 10.1016/j.biombioe.2010.10.018Search in Google Scholar

[42] Doner L.W., Hicks, K.B., Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction, Cereal Chem., 1997, 74 (2), 176-181. 10.1094/CCHEM.1997.74.2.176Search in Google Scholar

[43] Fengel, D., Wegener, G., Wood: Chemistry Ultrastructure, Reactions. Walter de Gruyter, Berlin, 1989. Search in Google Scholar

[44] Syed, H. U., Nebamoh, I.P., Germgård, U. A comparison of cold and hot caustic extraction of a spruce dissolving sulfite pulp prior to final bleaching. Appita, Vol 66 No 3, 229-233, ,2013 Search in Google Scholar

[45] Kuo, Y-N, Hong, J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym. Adv. Technol. 2005; 16: 425–428 Search in Google Scholar

[46] Quing, Q., Yang, B., Wyman, C., Xylo-oligomers are strong inhibitors of cellulose hydrolysis by enzymes,” Bioresc. Technol., 2010, 101(24), 9624-9630. 10.1016/j.biortech.2010.06.137Search in Google Scholar PubMed

[46] Qing, Q., Li, H., Kumar, R., Wyman, C. E., Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment: In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals , First Edition. Edited by Charles E. Wyman, 2013, pp. 391-415. 10.1002/9780470975831.ch19Search in Google Scholar

[47] Milessi, T. S. S., Kopp, W., Rojas, M.J., Manrich, A., Baptista- Neto, A., Tardioli, P.W., Giordano, R.C., Fernandez-Lafuente, R., Guisan, J.M., Giordano, R.L.C. Immobilization and stabilization of an endoxylanase from Bacillus subtillis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2015, in press 10.1016/j.cattod.2015.05.032Search in Google Scholar

[48] Jorgensen, H; Olsson, L. Production of cellulases by Penicillium brasilianum. IBT 20888- Effect of substrate on hydrolytic performance, v. 38, p. 381-390, 2006. 10.1016/j.enzmictec.2005.06.018Search in Google Scholar

[49] Lu, Y. P; Yang B; Gregg D; Saddler J.N; Mansfield S.D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, v. 98, p. 641-654, 2002 10.1007/978-1-4612-0119-9_52Search in Google Scholar

[50] Berlin, A; Gilkes, N; Kilburn, D; Bura, R; Markov, A; Skomarovsky, A; Okunev, O; Gusakov, A; Maximenko, V; Gregg, D; Sinitsyn, A; Saddler, J. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substratesevidence for the role of accessory enzymes. Enzyme and Microbial Technology, v. 37, p. 175-184, 2005. 10.1016/j.enzmictec.2005.01.039Search in Google Scholar

[51] Weiss N., Börjesson J., Saaby L., Meyer P., Meyer A. S., Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling, Biotechnol. Biofuels, 2013, 6:5. 10.1186/1754-6834-6-5Search in Google Scholar PubMed PubMed Central

[52] Rocha, G.J.M., Nascimento, V.M., Silva, V.F.N.D., Corso, D.L.S., Gonc¸ alves, A.R., 2014.Contributing to the environmental sustainability of the second generationethanol production: delignification of sugarcane bagasse with sodiumhydroxide recycling. Ind. Crops Prod. 59, 63–68. 10.1016/j.indcrop.2014.05.002Search in Google Scholar

Received: 2014-11-24
Accepted: 2015-11-4
Published Online: 2016-2-19

© 2016 Viviane Marcos Nascimento et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.12.2023 from
Scroll to top button